

NCReport Definitive Guide (Beta)
Norbert Szabo

Version 3.4, Mar 2025 - NCReport v2.30

Table of Contents
Basics . 3

1. About NCReport in general . 4

1.1. A short history . 4

1.2. What is NCReport? . 4

1.3. Features. 4

1.4. Why NCReport? . 5

1.5. How NCReport does work. 5

1.6. Working schema . 5

1.7. Report template file . 6

2. Installing NCReport . 7

2.1. Requirements. 7

2.2. NCReport has been tested with: . 7

2.3. Install Binary package on Linux . 7

2.4. Install (commercial) source package under Linux . 7

2.5. Install binary package on Windows. 8

2.6. Install (commercial) source package under Windows . 8

2.7. Contents of the installation directory . 9

2.8. Acknowledgements . 9

3. Getting started. 10

3.1. Creating a basic report . 10

3.2. Beginning with a new report . 10

3.3. Testing report in Designer . 21

3.4. Variables and Groups . 22

3.5. Integrating NCReport into a Qt application . 27

4. Report Items . 31

4.1. Static Text Item . 31

4.2. HTML (Rich) Text . 31

4.3. Data Field . 31

4.4. Line . 32

4.5. Rectangle . 32

4.6. Ellipse . 32

4.7. Image . 32

4.8. Barcode . 32

4.9. Table View / Model . 32

4.10. Cross Table . 32

4.11. Custom Graphics Content . 33

5. Parameters. 34

5.1. Parameter Syntax . 34

5.2. Testing Parameters. 34

5.3. API code: Passing parameters to the report . 35

Designer . 36

6. Getting Started with NCReport Designer . 37

6.1. Launching Designer . 37

6.2. The User Interface . 37

6.3. NCReport Designer Main Window . 38

6.4. Geometry editor . 38

6.5. Data Source Tree. 39

6.6. Field Expression Builder. 40

6.7. Designing a report . 41

6.8. Connecting to database from Designer . 42

6.9. Beginning a new report . 43

6.10. Report sections . 44

6.11. Setting up page and report options . 46

6.12. Adding data sources. 47

6.13. Assigning data source to the Detail . 49

6.14. Adding report items. 50

6.15. Adding total variable field . 60

6.16. Other items . 61

6.17. Adjustment and formatting . 61

6.18. Report is ready . 61

6.19. Adding Variables for Totals . 62

6.20. Running the report. 63

Advanced Features. 66

7. Data/Script Expressions . 67

7.1. Using references in expressions . 67

7.2. References in templates . 68

7.3. Reference examples . 68

7.4. Testing Field Expression . 68

7.5. Field expression . 68

7.6. Result of field expression . 69

7.7. Print When Expressions . 69

7.8. Testing Print when expression . 70

7.9. Print only when expression is true condition . 70

7.10. Templates in Fields and Texts . 70

7.11. Script expressions in special locations . 71

7.12. Data Source Functions . 71

7.13. Data Source related (meta) functions . 71

7.14. Data Source Column related (Value) functions . 73

8. Script Editor. 75

8.1. Script ID . 75

8.2. Script Definition . 75

8.3. Available Buttons . 75

9. Data Formatting . 77

9.1. Text formats . 77

9.2. Numeric formats. 77

9.3. Date Formats . 78

10. Zones . 81

10.1. Zone ID in property dialog . 81

10.2. Zones in Design mode . 81

11. Dynamic data driven size and position . 83

11.1. Dynamic position and size settings . 83

12. Dynamic data driven shape style . 84

12.1. Dynamic style settings. 84

13. Page Breaks . 85

13.1. Detail page break condition. 85

13.2. Group page break condition . 85

13.3. Report item page break. 85

13.4. Report header page break . 85

14. Text Document printout mode . 86

14.1. Steps of usage . 86

14.2. Text Document printout report example . 86

15. Data Relation system. 87

15.1. Defining a parent data source . 88

15.2. Defining child data sources . 88

15.3. Setting up the detail section. 89

15.4. Designing the report . 89

15.5. Sub-query report example in Designer. 89

15.6. Result of a sub-query report example . 90

15.7. Changes in 2.13 version . 91

16. Double pass mode . 93

16.1. Setting double pass mode. 93

16.2. Example using of pagecount variable. 93

17. Internationalization . 94

17.1. Adding languages . 94

17.2. Adding translations of Fields or Labels. 94

17.3. Setting up the current language . 95

17.4. Setting up the language. 95

17.5. Setting up the current language from command line . 95

18. Sub-Report iteration . 96

18.1. Sub-Report data source. 96

18.2. Reference to master data source . 96

19. Table View Rendering . 97

19.1. Adding TableView item. 97

19.2. Table View Dialog. 97

19.3. Setting the object references . 98

19.4. Example . 99

19.5. QTableView widget . 99

19.6. QTableView table in print preview . 99

19.7. Printing Item Model Based Table without QTableView . 100

19.8. Custom Cell Content. 100

19.9. Handle progress signal of table rendering. 102

20. Cross-Tab Tables. 103

20.1. Table Structure . 103

20.2. Using Cross-Table in Designer. 105

21. Conditional Formatting . 108

21.1. Dynamic Style Tag Symbols . 108

21.2. Editing Style Code in Designer . 109

21.3. Default Style . 109

22. General TEXT output. 110

22.1. Text template manager tags . 110

22.2. Text template tags . 110

22.3. Examples . 111

23. Batch Report Mode . 112

24. Special Detail Sections . 113

24.1. Sub (Detail) Sections . 113

24.2. Adding a Sub-Section. 113

24.3. Example Sub-Sections . 113

24.4. Odd / Even Pages . 114

24.5. Repeated detail by constant or dynamic value . 115

Command Line Tool. 116

25. Command line client . 117

25.1. To run command line executable. 117

25.2. Command line options . 117

Using NCReport API . 119

26. Using NCReport API. 120

26.1. Project file settings. 120

26.2. Initialize NCReport class. 120

26.3. Include directives. 120

26.4. Creating NCReport class . 121

26.5. Connecting to SQL database . 121

26.6. Setting the Report’s source. 122

26.7. Adding parameters . 122

26.8. Running the Report . 122

26.9. Running the Report by One Step . 122

26.10. Running the Report in customized mode. 123

26.11. Initializing Report’s Output . 123

26.12. Running the Report . 124

26.13. Previewing Report . 124

26.14. Deleting Report object. 125

26.15. Using other data sources . 125

26.16. Custom data sources . 128

26.17. Custom items in NCReport . 132

26.18. Batch report mode . 134

Specification . 135

27. Specification . 136

27.1. Data sources . 136

27.2. Report sections . 139

27.3. Report Parameters . 144

27.4. Variables. 144

27.5. System Variables. 144

27.6. Expressions . 146

27.7. References in expressions . 146

27.8. Using script expression in field: . 146

27.9. Report items . 147

27.10. Fields . 148

27.11. HTML Text . 151

27.12. Line . 152

27.13. Rectangle . 153

27.14. Image . 154

27.15. Barcode. 155

27.16. Graph or custom item . 157

Dedication

To all NCReport users,

This work is dedicated to you, the tireless explorers of the digital realm. Your curiosity drives
innovation, your perseverance overcomes countless challenges, and your creativity brings life to
technology in ways unimaginable. Whether you are troubleshooting, coding, designing, or simply
navigating the complexities of the virtual world, your efforts shape the future of our digital
landscape.

Thank you for your resilience, your passion, and your relentless pursuit of excellence. This is for
you.

With friendly greetings,

Norbert Szabo

This book is designed to be the clear, concise, normal reference to the NCReport reporting software.
This we can use as the official documentation for NCReport. We hope to answer, definitively, all the
questions you might have about all the elements, features and entities in NCReport. It is essentially
a comprehensive user documentation, definitive guide of the NCReport Reporting System. It also
contains installation instructions, tutorials and information about the contents of the distribution.
In particular, we cover the following subjects:

• The general nature of NCReport. We quickly get you up to speed on how the pieces fit together.

• How to create NCReport reports. Where should you start and what should you do?

• Understanding all of the report elements. Each element is extensively documented, including
the intended semantics and the purpose of all its attributes. An example of proper usage is
given for every element.

• How to run NCReport reports. After you’ve created one, what do you do with it?

• How to integrate NCReport library into a Qt application.

Getting this Documentation

If you want to hold this book in your hand and flip through its pages, unfortunately it is not yet
possible unless you print it for yourself. You can also get this book in electronic form, as PDF, from
our web site: https://www.ncreportsoftware.com/download

Getting Examples from This Documentation

All of the examples are included on our web site. You can get the most up-to-date information about
this documentation from our web site: https://www.ncreportsoftware.com/download

Request for Comments

Please help us improve future editions of this book by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and plain old typos that you find. An online errata list is
maintained at https://tracker.ncreport.org Email your bug reports and comments to us at
support@ncreportsoftware.com

1

https://www.ncreportsoftware.com/download
https://www.ncreportsoftware.com/download
https://tracker.ncreport.org
mailto:support@ncreportsoftware.com

In general a report generator software tool, often referred to as a report generator or reporting
tool, is a computer program or software application designed to automate the process of creating,
designing, and producing various types of reports. These reports can encompass a wide range of
data and information, such as financial statements, business intelligence reports, marketing
analytics, inventory reports, and more.

Key features and functionalities of report generator software tools typically include:

• Data Extraction: They can extract data from various sources, such as databases, spreadsheets,
and external APIs.

• Report Design: Report generators often provide tools for designing the layout and formatting of
reports, including the ability to add tables, charts, graphs, and other visual elements.

• Template Creation: Users can create report templates or use pre-designed templates to maintain
consistency in the look and feel of reports.

• Data Manipulation: These tools allow users to manipulate and transform data before it is
included in a report, which can involve calculations, filtering, sorting, and grouping.

• Automation: Report generators automate the process of report generation, saving time and
reducing the potential for human error.

• Export Options: They support various output formats, including PDF, Excel, HTML, CSV, and
more, so that users can choose the format that best suits their needs.

• Integration: Many report generators can integrate with other software applications and
databases, enabling seamless data extraction and reporting.

• Scheduling: Some report generators allow for the scheduling of report generation at specific
intervals, which is particularly useful for recurring reports.

• Collaboration: Report generators may facilitate collaboration among team members by allowing
them to work on reports simultaneously and share them with others.

Report generator software is commonly used in business environments to streamline the reporting
process and provide decision-makers with timely and accurate information. It can be particularly
valuable in industries such as finance, healthcare, marketing, and manufacturing where regular
reporting and data analysis are essential for operations and decision-making.

2

Basics
This part covers the basic steps of the NCReport usage in practice.

3

Chapter 1. About NCReport in general

1.1. A short history
NCReport’s history is more than 10 years old. The project has been started in 2002 as a joint project
of a Qt3 application and later the tool has become a unique GPL project. The reason why the system
was started to plan the urgent needs of data printing as a very missing function in Qt/C++
programming environment. In 2007 the full project has been rewritten into a new commercial
project by following the well formatted fully object oriented design concept. This version was
named 2.0 version.

1.2. What is NCReport?
NCReport is a report generator, report writer tool, report engine with GUI designer primarily for Qt
applications, though it is by no means limited to Qt environment. The software tool enables
applications to print data driven reports, tables, lists, rich text documents or even any paginated
graphical contents from one or more data sources. The system consists of at least two parts: Report
engine and designer GUI application. The report engine is also available as command line
executable. The report engine can be used and integrated into any Qt applications independently.
NCReport has already been used and integrated by a growing community of commercial users and
professionals.

1.3. Features
NCReport provides the following features and functions

• XML report definition (report template)

• Metric based, band oriented system

• Wide range of data source types: SQL Database, Text, QAbstractItemModel, XML, any user defined
data source class

• Output formats: Preview, Printer, Postscript, PDF, SVG, Image, HTML, Text

• Fast private preview window system

• Internal or external SQL database connections

• Items: Label (simple text), Field, HTML/Rich text, Line, Rectangle, Ellipse, Image, Barcode,
Custom content item

• Page header/footer

• Report header/footer

• Unlimited level of grouping with group headers and footers

• Variables for totals and aggregate functions, system variables

• Static and dynamic images

• Static and dynamic HTML contents

4

• Barcode rendering with at least 50 types of available barcodes thanks to the Zint barcode
library.

• Template mode, expression and script evaluations in fields

• Parameters from application side

• Zones

• HTML Text Document printout mode

• Pure Qt4/Qt5/Qt6 compatible code (Qt4.5 - Qt6.5)

• Conditional Field or Label formatting

1.4. Why NCReport?
Modern software applications often use various data sources and SQL databases. In most cases,
they must have the ability to print or represent data in several output formats, making report
generation a crucial feature. For data-center applications, the ability to generate reports is almost
always required. If you want to enable your application to generate reports efficiently, NCReport is
an excellent choice.

The NCReport project represents thousands of development hours and is continuously maintained.
By integrating this reporting tool into your application, you will save a significant amount of
development time and eliminate the need to develop any printing functions for your application.
This is especially true for software written in C++ using the Qt multi-platform toolkit/library.
Additionally, NCReport is a fully portable, native C plus plus multi-platform solution.

1.5. How NCReport does work
What does NCReport do exactly? In few words NCReport generates ready to print documents from
raw data by a template. As a first step an XML report definition as a template must be created. This
is a scenario for the report engine that describes what content must exactly render and how should
it look like, where the data come from and so on. This report definition can come from local or
remote file or from SQL database depending on what report source was defined. Report source
manager is a part of the report engine that handles and loads report definition from it’s origin. The
report designer application as a separated GUI application designed for creating report XML
definitions. When running a report first the report engine parses report definition and opens the
specified data source(s). If SQL data source is defined a valid SQL database connection must be
alive (in case of non built-in database connection is defined) After the data source(s) successfully
opened SQL query is run by the report director. The report engine begins to process data row by
row by specified data source assigned to the first detail section. While report is processing, the
report director manages the rendering of different sections and the items inside. The result is
rendered to the specified output such as: printer, print preview, postscript, PDF, SVG, Image, HTML,
Text

1.6. Working schema
The following diagram illustrates how the report generator works in general.

5

1.7. Report template file
NCReport uses Extensible Markup Language (XML) format for report definition. This is a universal
standard file format, which simplifies also the human reading and processing the report definition
templates.

6

Chapter 2. Installing NCReport

2.1. Requirements
• Linux or any Unix like operation systems or ™Microsoft Windows or MacOS 10.5 or above.

• At least 512Mb of memory and a 1GHz CPU.

• 90Mb of free disk space

NCReport is officially supported on Windows XP/Vista/10/11, on Linux >=2.6 and on MacOSX >=10.4.
It is also possible to use it on other platforms that are supported by Qt but with limited support or
without getting support from us.

2.2. NCReport has been tested with:
• Qt4.5-Qt6.4 under Windows XP/7/10/11

• Qt4.5-Qt6.4 under Linux (Ubuntu 10.04, 12.04, 16.04, 18.04, 20.04, 22.04)

• Qt4.7-Qt6.4 MacOS 10.6 - MacOS 12

2.3. Install Binary package on Linux
Make sure that the appropriate Qt version binaries are already installed on your Linux system. The
required version is specified in the downloaded package. Unpack the NCReport Linux distribution
to any directory you want: (i.e ncreport)

$ cd ncreport
tar xzvf ncreport2.x.x.tar.gz
$ cd ncreport/bin

NCReport binary files are intended to be used directly from the ncreport-2.x.x/bin` directory. That
is, you can start NCReport binaries by simply executing: To start the report designer:

$./NCReportDesigner

To start the command line report engine:

$./ncreport

After all you may want to add ncreport_2.x.x/bin/ to your $PATH.

2.4. Install (commercial) source package under Linux
Make sure that GCC/G c compiler and the appropriate version of Qt development environment is

7

already installed on your Linux system. In addition, you need to be compiled/installed appropriate
Qt’s database drivers. Example reports mostly use QMYSQL and QSQLITE database drivers.

Unpack the NCReport Linux source package inside any directory you want:

$ cd directory
$ tar xzvf ncreport2.x.x.tar.gz
$ cd NCReport2.x.x
$ qmake
$ make

To start NCReport binary files just do the same as it’s written in previous section.

2.5. Install binary package on Windows
It is strongly recommended to download and install one of the auto install setup.exe files.
(NCReport_2.x.x_Windows.exe, NCReport_2.x.x_Windows_MinGW.exe)

Just simply run the setup executable file and follow the setup wizard instructions. To start
NCReport Designer use the Start menu

2.6. Install (commercial) source package under
Windows
For license holders only. Make sure that a ™Windows C development environment is already
installed on your Windows system. If you use Open Source version of Qt, the `GNU MinGW`
compiler is contained in the `Qt SDK.`Current example shows the compiling procedure using
`Microsoft Visual C` compiler

Make sure that the appropriate version of Qt development environment is already installed on your
Windows system. In addition, you need to be compiled/installed appropriate Qt’s database drivers.
Example reports are mostly use QMYSQL and QSQLITE database drivers.

Simply unpack the downloaded ncreport2.x.x.zip or .tar.gz or .7z source package. Use a tool like
Winzip or 7-Zip Windows has built-in support for .zip archives. To unzip the NCReport distribution
inside any directory:

mkdir ncreport
cd ncreport
unzip ncreport_2.x.x_src.zip
qmake
nmake

8

2.7. Contents of the installation directory
• /bin Contains the NCReport executable files

• /doc Contains the User Guide and API documentation in html format

• /sql Contains the sql script files are required for some of example reports

• /reports Contains the sample reports for demonstrating NCReport features

• /lib Contains the binary library files (Unix/Linux only)

• /testdata Contains test files for demonstration purposes. defaulttestdata.xml file is used by
Designer application for storing test parametersdata. If want to use it, please copy this file to
/bin directory before starting NCReportDesigner.

• /i18n Contains internationalization files.

• /images Contains image files for a sql_productlist_with_dynimages_demo.xml test report

• /src Contains the source codes of NCReport system. The binary package contains only the
source of demo and sample applications. The full source code is available for commercial
license holders only.

2.8. Acknowledgements
On Windows, the NCReport installer is built using Inno Setup by https://www.jrsoftware.org, Jordan
Russell’s software. We highly recommend this excellent and free-to-use tool.

9

https://www.jrsoftware.org

Chapter 3. Getting started
This chapter is intended to provide a quick introduction to NCReport system. If you’re already
familiar with using the tool, you only need to skim this chapter. To work with NCReport, you need
to understand a few basic concepts of structured editing in general, and NCReport, in particular.
That’s covered here. You also need some concrete experience with the way a NCReport report
definition is structured. That’s covered in the next chapter.

3.1. Creating a basic report
At the very beginning we go through the first basic steps of creating a simple report. In our example
we build a plain product price list report grouped by product category.

3.2. Beginning with a new report
Open the report designer GUI application and let’s begin a new report by clicking [ New ] toolbar

button or use File › New menu.

A new empty report in the Designer

3.2.1. Setting up page options

Page options of the current report can be specified in Report and Page settings dialog. Open the

Report › Report and page settings In the report page settings dialog you can specify the following
options:

10

Report name

Type the name of the report. It’s just an informative option, it’s not used by report generator.

Report type

There are two type of reports available. Report represents a normal report, Text document is a
limited report mode. In this mode the report can contain HTML text items only. The generated
report will be a paginated html document.

File encoding

The encoding of the XML file. When user opens or saves the report definition file, this will be the
default encoding. In most cases UTF-8 fulfils the requirements, but for special international
characters you can choose any specified encoding.

Default font

The font name and size are basically used for the text labels and fields in the whole report. Unique
object settings may overwrite this option.

Page size

The size of the page. The size names are listed in the combobox and their names are the standard
size names. Currently the standard page sizes are supported.

Background color

The background color of the report. This option currently is unused.

Header and footer settings

The check boxes can be used to enable or disable page header/footer and report header/footer. To
alter the height of theese sections you may use spin boxes corresponding to their check boxes. You
can also change these height properties by mouse dragging or by geometry editor

Margins

margin properties represent the top, bottom, left and right margins of the page in millimeters. To
alter the margin values just use the spin boxes.

Orientation

This radio button option represents the orientation of the page, Portrait or Landscape orientation
can be selected.

Specify the page’s properties by this example and click [ OK ] button for saving data source settings.
We add the report’s name only, other default properties we don’t change.

11

Page settings dialog

3.2.2. Adding a data source

First, you see an empty new report that contains a page header, a detail and a page footer sections
by default. Before starting to add report items we define the data source that represents a definition
where the data will come from. In our example the data source is a Text. To specify a data source in

your report open the Report menu and select Report › Data sources… menu item. Then appears a
dialog on you can add and or remove data sources. To add a new data source click the [ Add ]
button in dialog and then select the QStringList data source type from the list of available data
source types. [ Create ] button

In the data source dialog the following properties we specify:

12

Data source ID

This ID is important for assigning data source to a detail section.

Data source type

The type of the data source you’ve already chosen before.

Location type

Location type is a property that describes where the data can be found. In this report we will use
static Text which is a statically pasted text. The text will be saved into the report.

Specify the data source properties by this example and click btn::[OK] to save the data source
settings.

3.2.3. Assigning data source to the detail section

To assign the data source we defined before, open the Report › Report menu and select Report ›
Details and grouping… menu item, then appears a dialog on you may manage the detail sections
of the report. A default detail ID is Detail1, you may change it to whatever you want. Select the

previously defined data source from Report › data source combo box.

13

Click [ OK ] button to apply detail settings.

3.2.4. Preparing some test data

To try or test our report from Designer application we need some test data. This step is not
necessary if you test the report from your application. Test data editor in designer makes easier the
designing, debugging and testing of reports. In our example we create a simple product list
included the following columns:

• category as 0. column

• product name as 1. column

• product code as 2. column

• active as 3. column

• weight as 4. column

• price as 5. column

A Magnetometer D54/78 yes 0.778 15.6
A Pressostat M542 no 2.547 30
B Oil pump CT-784 yes 1.510 17
B Water pump RF-800 yes 3.981 58
B Erling o-ring 577874 yes 2.887 49
C Hydraulic cup HC55 no 0.435 39
C Ballistic rocket BV01 yes 1.260 157.9
C Wheel Q185/70 yes 25.554 199.0

To open the test data editor form open the Report › Test data editor… menu item, then appears a

14

dialog on you can edit and setup test data. There are three types of data source are available to use
for testing. We need test data as QStringList, so we have to check the Store as QStringList check
box and specify the ID.

Click [ OK ] button to apply detail settings. The checked types with their corresponding ID will effect
the desiger to add the test data to report test runner as a specified by ID data before running the
report.

3.2.5. Using Geometric Editor

Geometry editor is a small property tool window in designer for showing or editing the position

and size of objects in focus. To enable/disableGeometry editor just use Report › View menu and

enable/disable Report › Geometry editor menu item. Then the tool window will appear in the
right side. The current objects or sections are always activated by a mouse click. You can type the
numeric size or position values into the spin boxes. Any changes made to the object’s properties
cause it to be updated immediately.

3.2.6. Designing page header section

Page headers is used to contain page headings. First, we will add column titles as labels to page
header section. Labels are simple texts. Label items are used to display descriptive information on a
report, such as titles, headings, etc. Labels are static items, their value never change.

3.2.7. Adding Labels

Select the Label tool button or menu item in Tools menu. After that the cursor changes to a cross
beam, then click in the page header of the report definition where you want the Label to be located.
Doing so will create the Label object in that section and opens the Label settings dialog.

15

Add labels to page header for column titles and move them to positions by example. Then select
"Weight" and "Price" (multiple selecting is available) and align them right by clicking [ Right
alignment ] tool button.

3.2.8. Resize section

Increase the height of page header section by dragging the resizer bar at the bottom of the section.
Another way for resizing to type Section height value in Geometry editor.

3.2.9. Drawing a line

To underline the labels, let’s draw a Line by selecting the Line button in the tool bar or menu item
in Tools menu. After that the cursor changes to a cross beam, then click in the section of the report
definition where you want the line to be started and simply drag the line to the end position. (To
move the line just drag and drop by left mouse button.)

16

3.2.10. Designing Detail section

The core information in a report is displayed in its Detail section. This section is the most important
section of the report since it contains the row by row data from the data source.

3.2.11. Adding Fields

Select the Field tool button or menu item in Tools menu. After that the cursor changes to a cross
beam, then click in the detail section where you want the Field to be located. Doing so will create
the Field object in that section and opens the Field settings dialog. The following properties must be
specified:

Field source type

The combo box contains the possible sources from where the field can pull data.

Field column/expression

This property represents the name of the data column from where field’s value is loaded from. To
identifying data columns specify:

• the name of SQL column when using SQL data source

• the number of column 0,1,2…n or col0,col1,col2…coln

• when using StringList, ItemModel, StringParameter, Text data source.

3.2.12. Data type

The field’s base data type. The following data types are supported: Text,Numeric,Date,Boolean

The field’s property dialog of the 1st column field:

17

Add Fields to Detail and move them to positions by example. Field column names are: col0, col1,
col2, col3, col4, col5 (alternative naming: 0, 1, 2, 3, 4, 5) Select col4 and col5 field item and
align them right by clicking [ Right alignment ] tool button. After, in the field’s dialog set Data type
to Numeric and use the Numeric tab page to set number formatting properties.

18

Resize the detail section to 4.5 mm height. After also a title label added to the page header section
and formatted, the report should look like this:

3.2.13. Designing page footer section

Page footer is usually used to display informations such as number of the page. In our example we
only add two system variable fields: Application info and the current page number.

3.2.14. Adding System variable fields

Select the Field tool button or menu item in Tools menu. After that the cursor changes to a cross

19

beam, then click in the detail section where you want the Field to be located. Doing so will create
the Field object in that section and opens the Field settings dialog.

3.2.15. Adding page number field

Specify the field’s properties by this example:

3.2.16. Adding application info field

Add again a new field to page footer and specify the field’s properties by this, similar to the
previous: Field source type: System variable Field column expression: appinfo

3.2.17. Resize section

Derease the height of page footer section by dragging the resizer bar at the bottom of the section.
Another way for resizing to type Section height value in Geometry editor. After setting the
alignments and moved fields to the right positions, the report should look like this:

20

3.3. Testing report in Designer
Our sample report now is ready for testing. To run report from designer there are at least two

ways: Select Report › Report/Run report… menu and after the report runner dialog appears you
can choose the report’s output. To start running report just click [ OK ] button.

For fast preview just select Report › Report/Run report to preview… menu and then the Designer
will run report to print preview immediately. In this state the preview of our example report
appears like this:

21

3.4. Variables and Groups
The following section describes how to use some advanced feature of NCReport. We will define a
group and after we will add summary variables to our example report.

3.4.1. Adding a variable for summary

Variables are special numeric items used for providing counts and totals. Each of them have name,
function type, data type, and have an assigned data source column the variable based on. To add a

variable open the Report › Report menu and select Report › Variables… menu item. Then appears
a dialog on you can manage variables.

The following options are available for variables:

Variable ID

The name/ID of the variable

Variable expression

The data source column name the variable is based on

Function type

The function type of the variable. Supported function types: Sum, Count

Reset scope

Specifies the scope after report engine resets the variable. Group level resets also must be set by
group settings dialog.

22

Initial value

Initial value of the variable

Let’s create a var0 which will summarize col4 column. (weight) It provides variable to summarize
col4 values in 'Group' Reset scope. Specify the field’s properties by this example:

To apply settings click [ OK ] button on Variable dialog.

3.4.2. Defining a group

Reports often require summary data by band. In our example we will add weight summary by

product category to report. First, open the Report › Report menu and select Report › Details and
grouping… menu item, then appears a dialog on you may manage the detail sections and groups of
the detail. Select "Detail1" detail and click the [ Data grouping… ] button, then the Group settings
dialog will appear. The following properties are available for a group:

Group ID

The name/ID of the group for indentification purpuses

Group expression

The name of the data source column the group is based on. Group expression can be data source
column or any data expression or constant. Let’s set a constant group expression: %CONST Constant
groups have only one group header and footer.

Header and Footer

To enable or disable group header and footer, check on or off the specified check box. To set initial

23

height of these sections you can use spin boxes near the check boxes.

Reset variables

This list contains the 'Group' scope variables. You can specify which variable the report generator
has to reset when a group level run out.

We want the grouping to be based on col0 column (product category column). Specify the field’s
properties by this example:

To apply settings click [ OK ] button on Group dialog and then click [ OK ] button on Detail dialog.
After doing so group header and footer of the detail will appear.

24

3.4.3. Adding summary field to group footer

To add a Field based on var0 variable just add again a new field to group footer and specify the
field’s properties by example:

25

After adding variable field and some labels and a line to group header and footer our report should
look like this:

3.4.4. Final testing the report

Now we are ready! For preview testing just select again Report › Report/Run report to preview…
menu and then the Designer will run our report to print preview. In this state the preview of our
example report appears like this:

Congratulations! We have created a simple one level group report. In the next step we will describe
how to run this report from your application.

26

3.5. Integrating NCReport into a Qt application

3.5.1. Adding NCReport library to an application

In order to using NCReport from your application, first you have to integrate NCReport into your
application project using the NCReport API classes. There are at least two ways to do this:

Statically adding source codes to your project

• Adding the whole sources statically to your project and build it together with your application.
In this case you don’t need NCReport shared libraries. Doing so open your .pro project file and
add the full source package to the project as testapp/testapp.pro does.

Linking report engine as shared library

• Using NCReport engine as shared library. For using NCReport library like other libraries in your
project you need to specify them in your project file. The following project example shows the
necessary settings:

QT = xml sql gui core
TEMPLATE = app
CONFIG += warn_on \
qt \
thread \
release

TARGET = MyApplication
INCLUDEPATH = ../ncreport/includes

HEADERS += ...
SOURCES += ...

win32 {
LIBS += ../lib/ncreport2.lib
}
unix {
LIBS += -lncreport -L../lib -L/usr/local/bin
target.path = /usr/local/bin
}

For more information see the Qt documentation in qmake manual at chapter Declaring Other
Libraries.

3.5.2. Initializing NCReport class

This step shows you how to initialize NCReport class. Includes. First we have to add includes. To
include the definitions of the module’s classes, use the following includes:

27

#include "ncreport.h"
#include "ncreportoutput.h"
#include "ncreportpreviewoutput.h"
#include "ncreportpreviewwindow.h"

Creating NCReport class. We create the report class just like as another QObject based class:

NCReport *report = new NCReport();

If NCReport object has been created earlier and passed as a parameter, you should inititalize the
report by calling reset() method:

report->reset();
//or
report->reset(true);

NCReport::reset() function will delete all object references, and makes report engine able to run a
report again. If parameter is set TRUE, also report parameters, added data sources such as
QStringLists, custom items will be deleted.

3.5.3. Setting the Report’s source

Report source means the way of NCReport handles XML report definitions. Report definitions may
opened from a file - in most cases it is suitable, but also it can be loaded from an SQL database’s
table. In our example we apply File as report source:

report->setReportFile(fileName);

This code is equivalent with this code:

report->setReportSource(NCReportSource::File);
report->reportSource()->setFileName(fileName);

Adding parameters To add a parameter to NCReport use addParameter method. The parameter ID
is a string, the value is a QVariant object.

report->addParameter("id", QVariant("value"));

This code is equivalent with this code:

report->addParameter("paramID", "Parameter value");

28

3.5.4. Running the Report

Now we are ready to run the Report to different outputs. Doing so just use one of runReportTo…
functions. Running report to printer

report->runReportToPrinter();

Running report to PDF

QString fileName("mypdffile.pdf");
report->runReportToPDF(fileName);

Running report to Print Preview

report->runReportToPreview();

If you run report to preview, result will be stored in an NCReportPreviewOutput object. Report
engine does not run the preview form automatically. After the report engine successfully done we
need to initialize an NCReportPreviewWindow object for previewing. Before doing so we check if a
report error occurred.

if (!report->hasError()) {
 NCReportPreviewWindow *pv = new NCReportPreviewWindow();
 pv->setOutput((NCReportPreviewOutput*)report->output());
 pv->setWindowModality(Qt::ApplicationModal);
 pv->setAttribute(Qt::WA_DeleteOnClose);
 pv->show();
} else {
 QMessageBox::warning(tr("Error");
}

To get the current output use NCReport::output() function.

When you run report to preview the report output object won’t be deleted by
NCReport. When the NCReportPreviewWindow object is destroyed, output is deleted
automatically by it’s destructor.

3.5.5. Error handling

To catch errors you can use the following functions:

bool error = report->hasError();
QString errormsg = report->;lastErrorMsg();

29

Deleting Report object After report running action you may delete the report object. When
NCReport object is deleted all child objects are also deleted.

delete report;

Don’t delete NCReport object if NCReportPreviewWindow object still exists. If you want
to use report object again without deleting just use NCReport::reset() function.

30

Chapter 4. Report Items
The report items are the element objects we can put to the report sections. Our report content is
built from using these elements We have the following item types:

• Simple Static Text (label)

• HTML (Rich) Text

• Data Field

• Line

• Rectangle

• Ellipse / Circle

• Image

• Barcode

• Custom Graphical Content

• Table View / Model based Table

• Cross Table

• Graphics View Content

The various report item representations in the Designer’s tool bar:

4.1. Static Text Item
The static text item (or label) represents a simple uniformed text, it cannot be dynamic, it’s
statically saved to the report. We can use this item for labels, prefixes, suffixes or any static content
that won’t be changed. Static text be a single line or wrapped multi-line text block. The text format
can be set (font and alignments)

To change the text font format and attributes in the Designer select one or more static text item and
use the text formatting toolbars to change settings.

4.2. HTML (Rich) Text
HTML texts are complex text objects with HTML markup characteristic implemented by
QTextDocument class. It’s able to display rich text, specified using a subset of HTML 4 markup. The
text can be both static or dynamic so it’s possible to load rich texts from any data source at runtime.

4.3. Data Field
The most important report element that can represent one or more data from a data source,
parameter or variable using the appropriate expression depending on the field source type

31

4.4. Line
Graphical line that has a start point and an end point. The line characteristics are configurable, you
can change the line type and width and the color. Lines are static objects.

4.5. Rectangle
Graphical rectangle that has a 4 corner points, specified by height and width. The rectangle
characteristics are configurable, you can change the line type and width and the color. Rectangles
can be transparent or filled. Rectangles are basically static objects, but with the Dynamic Position
feature the height and the width can be managed dynamically using a data expression

4.6. Ellipse
Graphical ellipse that is specified by height and width. The ellipse characteristics are configurable,
you can change the line type and width and the color. Ellipses can be transparent or filled. Ellipses
are basically static objects, but with the Dynamic Position feature the height and the width can be
managed dynamically using a data expression.

4.7. Image
Image file or embedded image content with PNG, JPEG, BMP, SVG supported formats. You can assign
a direct link to a file or use a static, in-report stored image. The image is specified by height and
width, many characteristics are configurable: Alignment, Aspect ratio, Transformation mode. There
can be dynamic and static images in reports so the image element is very flexible.

4.8. Barcode
NCReport provides the barcode rendering with almost all symbology features thanks to the Zint
back-end 3rd party library. Barcode item can render a barcode from static or dynamic source.

4.9. Table View / Model
Table View item is a report item destined to rendering QTableView tables with WYSIWYG print
support. The function is aimed to print the tables in the same rate as the existed QTableView screen
widget. The table view item should follow the formats of the original QTableView widget. The cells
gets display outlook information from the table’s item model. Some basic table settings such as
header background, line type, line color, etc. are currently fixed. The table item also supports
rendering a QAbstractItemModel without a QTableView

4.10. Cross Table
This is known as PivotTable or a cross-tab report, or rotated data within a table. In cross-tab tables,
the data source records are represented as horizontal columns, and the cross-tab rows are printed
as data source columns. Tables often include horizontal and/or vertical summarization as well.

32

4.11. Custom Graphics Content
Graph/Custom item is a special member of NCReport items. This option enables you to render a
QPainter drawn contents in reports using C++/Qt code. The typical field of application is using this
feature for rendering graphs or similar user defined content

33

Chapter 5. Parameters
Parameters are data obtained from outside of the report generator. The application that calls the
NCReport object passes information as parameters to the NCReport class using the
NCReport::addParameter(…) method. Parameters get evaluated within SQL queries and script
expressions. Field objects can also have a parameter data source type, so they can be presented as
data in the report. Parameters are mostly used in SQL queries and data/script expressions.

5.1. Parameter Syntax
To embed a parameter into a query or an expression, use the following syntax:

$P{parameterID}

Example of using a parameter in an SQL query:

SELECT productId, productName FROM db.products WHERE primaryKey=$P{parameterID}

Example of using a parameter in a script expression:

"$P{firstname}" + "$P{lastname}"

Example of using a parameter in a data template expression:

Dear $P{firstname} $P{lastname},

5.2. Testing Parameters
To modify the SQL query, open the Report menu and select the Report/Data sources… menu item.
Modify the SQL query of our connection as follows:

SELECT ProductID, ProductName,
QuantityPerUnit, UnitPrice, QuantityPerUnit*UnitPrice as value
FROM products
WHERE ProductID > $P{prodID}
ORDER BY ProductName

Add a Parameter with the ID/name prodID to NCReport. NCReport Designer has a test runner dialog
with a parameter adding feature. To open the runner dialog, select the Run report… menu item
from the Report menu. Click the Add button and specify the name as prodID and the value to 70.
After running the report to Preview, we get the following result:

34

In all reports, Parameters are always evaluated within SQL queries, scripts, and PrintWhen
expressions.

5.3. API code: Passing parameters to the report

NCReport* report = new NCReport(parent);
QString companyName = tr("ABC Ltd");
report->addParameter("myid", companyName);

35

Designer
The NCReport Designer is a standalone GUI application to create and modify report templates. This
part makes possible to learn how to use the designer, how to design a report.

36

Chapter 6. Getting Started with NCReport
Designer
This chapter covers the fundamental steps that most users will take when creating reports with
NCReport Designer. We will introduce the main features of the tool by creating a simple report that
we can use with NCReport engine.

6.1. Launching Designer
The way that you launch NCReport Designer depends on your platform:

• On Windows, click the Start button, open the Programs submenu, open the NCReport2
submenu, and click NCReport Designer.

• On Unix or Linux, you may find a NCReport Designer icon on the desktop background or in the
desktop start menu under the NCReport submenu. You can launch Designer from this icon.
Alternatively, you can enter ./NCReportDesigner in a terminal window in NCReport/bin directory

• On MacOSX, double click on NCReport Designer in the Finder.

6.2. The User Interface
NCReport Designer’s user interface is built as any standard multi-window user interface. The main
window consists of a menu bar, a tool bar, and a geometry editor for editing the position and size of
objects. Geometry editor can be enabled or disabled by clicking on View/Geometry editor checkbox
menu.

37

6.3. NCReport Designer Main Window
The menu bar provides all the standard actions for opening and saving report files, managing
report sections, using the clipboard, and so on. The tool bar displays common actions that are used
when editing a report. These are also available via the main menu. File menu provides the file
operation actions, Report menu contains the report and it’s sections settings that belong to the
current/active report. View menu displays the specified items can be enabled or disabled in MDI
area. The Tool menu provides common report objects that are used to build a report. The Align
menu holds the alignment actions for the specified report items can be aligned. With the Window
menu you can manage the windows are opened concurrently.

Most features of NCReport Designer are accessible via the menu bar or the tool bar. Some features
are also available through context menus that can be opened over the report sections. On most
platforms, the right mouse button is used to open context menus.

6.4. Geometry editor
Geometry editor is a tool window can be enabled by View/Geometry menu. This window displays
the position and size informations of the current report section or object. The current objects or
sections are always activated by a mouse click. You can type the numeric size or position values
into the spin boxes. Any changes made to the object’s properties cause it to be updated immediately.

38

6.5. Data Source Tree
Data Source Tree (or data source manager) is a dock window widget in the main designer desktop.
The widget helps to add fields to the report very easily by a simple drag and drop action. The data
source tree is updated when you add or modify a data source in the report. Therefore it is
recommended to start the report building with defining the data source first. If the data columns
are available at design time they will appear in the widget under the appropriate data source item.

6.5.1. Adding a Field using the Data Source Tree

To add a field to any report section just drag the selected column and drop onto the section at the
position whatever you want. The Field item will be created at the drop position. Note that mouse
pointer target position is considered.

39

6.6. Field Expression Builder
When you work with Field items you get a useful helper tool for creating the correct Field
expression. You find the Expression builder button in the Filed settings dialog labeled Build
Expression… and besides the Print When logical expression editor controls. You can choose the
combo boxes to select the desired expression and you can add it by simple clicking on the small add
buttons. Then the expression will be inserted into the text area at the cursor position. Depending on
what type of expression you insert the expression builder will apply the correct syntax. You have
also the data source tree in the dialog that can be used for the same purpose if you just simply
select a Data Source column, a Parameter or a Variable. Double clicking on the appropriate item
will insert it from the data source tree.

6.6.1. Expression Builder Dialog Controls

The following description helps to understand what combo box widgets are found on the dialog and
what they are good for.

Field source type

You can select the field source type. This is what to do first. The source type will determine what
other controls will be available.

Data source

Selects the data source from all available data sources of the report. To add a data source click
on the add item beside the widget.

Column

Selects the data source column. To add a data column click on the add item beside the widget.

Variable

You can select here all available variables including the system variables. To add a variable click
on the add item beside the widget.

Data source function

You can select the available data source level functions here. To add a function expression click
on the add item beside the widget.

Value function

You can select the available data source value functions here. To add a function expression click
on the add item beside the widget.

Parameter

You can select the design time defined parameters here. To add a parameter click on the add
item beside the widget.

6.6.2. Logical Operation Buttons

You find also logical operation buttons on the dialog that boosts editing of a script or a logical
expression. When you click on a button it will insert the named logical operation into the text area.

40

6.6.3. Expression Builder Dialog

6.7. Designing a report
In this chapter we will look at the main steps that users will take when creating new report with
NCReport Designer. Usually, creating a new report will involve various activities:

• Deciding what kind of report structure to create.

• Deciding which kind of data sources to use.

• Defining the data sources

• Adding the report sections are needed

• Deciding which kind of items/objects to use in the different sections.

• Composing the user interface by adding report objects to the report sections.

• Connecting to SQL data source if needed* Testing the report

Users may find that they prefer to perform these activities in a different order, However, we
present each of the activities in the above order, and leave it up to the user to find the approach
that suits them best. To demonstrate the processes used to create a new report, we will take a look
at the steps needed to create a simple report with NCReport Designer. We use a report that engages
SQL database data source to illustrate certain features of the tool.

41

6.8. Connecting to database from Designer
NCReport Designer now enables you to test the report from inside the designer. Since this report
requires internal MySQL database connection, first we should connect to "northwind" database.
SQL database connections can be managed by the Connection manager within the designer
application. Open the Report menu and then select SQL connection manager… After the
Connection manager dialog will appear. By this dialog you can add one or more SQL connections.

The following options are available for connections:

• Database driver The appropriate SQL database driver.

• Connection name The name of the database connection. Qt uses this name in addDatabase(…)
function. For identifying the corresponding connection this value have to be specified.

• Host name Name or IP address of host

• Database name Name of the database

• Username Connection’s user name

• Password Connection’s password

• Port Connection’s port number. If empty, the default port is used in connection.

6.8.1. SQL connection dialog

• Connect Tries to establish the connection

• Add Adds a new connection and enables the options to edit

• Remove Removes the connection selected from the list

42

• OK Select to save your connection settings.

• Cancel Closes the dialog without saving any changes, returning you to the desktop.

After you specified connection parameters to the added connection use the Connect button to
establish connection. If the connection is succeeded then your report is ready to run. Before
running the report we rename our connection to northwind and then also our data source’s
connection name must be renamed to northwind. Doing so just open again the data sources…
dialog and then rename the connection ID to northwind too

You don’t need any SQL connection if you use non SQL data source in your report,
for example Text, Stringlist or other data source

6.8.2. Connection names (ID)

Each SQL datas source has its own connection name that is being used for running SQL queries. The
QSqlDatabase connection should have the same name you set in the data source. In the designer the
connection manager create a new connection with the same connection name you defined in the
report.

6.8.3. Using default connection

When the SQL data source does not have a connection name the report engine will run the SQL
query under the scope of the default database connection. Create a DB connection in the designer
connection manager with "default" connection name. That connects as a default connection so
you’ll be able to run your report from the designer with not specified (empty) connection name in
the report.

6.9. Beginning a new report
By clicking the New menu or tool opens a new instance of a report. Select this tool button or menu
to begin a new report definition. By default the new empty report contains page header, a detail
and a page footer sections.

6.9.1. New report

43

6.10. Report sections
Report sections are the representations of the function specific areas inside the report. Reports are
builded from sections. They are often a recurring areas such as detail, header or footer. The most
important section is called Detail since details can contain the fields are changed row by row. Each
sections can contain all kinds of report items. Item’s coordinates are always relative to their parent
section. One report can contain the following sections: Report header, report footer, page headers,
page footers, group headers and footers and details

To change the height of a section just drag the bottom resizer bar under the section area and resize
to the size you want or type the height value in millimeter at Geometry editor’s spinbox if that is
enabled. To activate the current section just click onto the empty area of a section

6.10.1. Detail

The core information in a report is displayed in its Detail section. This section is the most important
section of the report since it contains the row by row data from the data source. Detail section have
the following characteristics:

• Generally print in the middle of a page (between headers and footers)

• Always contain the core information for a report

• Display multiple rows of data returned by a data source

• The detail sections generally contains fields.

• Multiple independent details are allowed in one report, each detail after the other

44

• All of details are assigned to one specified data source

6.10.2. Page header

Page headers is used to contain page headings. Page headers have the following characteristics:

• Always print at the top of a page

• Always contain the first information printed on a page

• Only display one (current) row of data returned by a data source

• Only one allowed per page

In most cases you need page header in reports. To add or remove page header select Report/Page
options… menu, then appears a dialog on you can set the page options of the current report. To
enable or disable page header just use Page header check box.

6.10.3. Page footer

Page Footer are commonly used to close the pages. Page footers have the following characteristics:

• Always print at the bottom of a page

• Only display one (current) row of data returned by a data source

• Only one allowed per page

Page footer is usually used to display informations such as number of the page, report titles and so
on. In most cases you need page footer in reports. To enable or disable page footer just use Page
footer check box in Report/Page options… menu.

6.10.4. Report header

Report header is a section used to contain report headings. Report header has the following
characteristics: * Always printed after the page header * Report header is printed only once at the
begining of the report * Displays only one (current) row of data returned by a data source

To enable or disable report header use Report header check box in Page options dialog can be
activated by opening Report menu and selecting Page Options…

6.10.5. Report footer

Report footer is a section commonly used to close the report. Report footer has the following
characteristics:

• Always printed before the page footer at the end of the report

• Only display one (current) row of data returned by a data source

• Only one allowed per report

To enable or disable report footer use Report foter check box in Page options dialog can be
activated by opening Report menu and selecting Page Options…

45

6.11. Setting up page and report options
Page options of the current report can be specified in Page options dialog. Open the Report menu
and select Page options…. In the report page settings dialog you can specify the following options:

• Report name Type the name of the report. It’s just an informative option, it’s not used by report
generator.

• File encoding The encoding of the XML file. When user opens or saves the report definition file,
this will be the default encoding. In most cases UTF-8 encoding suit the requirements, but for
special international characters you may choose the specified encoding.

• Page size The size of the page. The size names are listed in the combobox and their names are
the standard size names. Currently the standard page sizes are supported.

• Default font The font name and size are basically used for the text labels and fields in the whole
report. Each object may change this option.

• Background color The background color of the report. This option currently is not used.

• Header and footer settings The check boxes can be used to enable or disable page
header/footer and report header/footer. To alter the height of theese sections you may use spin
boxes corresponding to their check boxes. You can also change these height properties by
mouse dragging or by geometry editor

• Margins margin properties represent the top, bottom, left and right margins of the page in
millimeters. To alter the margin values just use the spin boxes.

• Orientation This radio button option represents the orientation of the page, Portrait or
Landscape orientation can be selected

46

The following buttons are available for apply or cancel settings:

• OK Select to apply your settings.

• Cancel Closes the screen without saving any changes, returning you to the designer desktop.

Specify the report page properties by using Page options dialog and validate the settings by clicking
the OK button.

6.12. Adding data sources
At the very beginning we have to decide what data source type(s) we intend to use in the report.
Since the report generator builds a printable representation of data from a data source, at least one
data source must be defined in the report. Data may be fetched from an SQL query using Qt’s
database SQL database connection drivers or from other sources that don’t require SQL connection,
such as text, string list or custom defined data source. One report can contain multiple data sources
and each details can be connected to one selected data source. Often a data source is not assigned to
any of detail, in this case you can use these kind of unassigned data sources as a one (first)
row/record source of data. See the details later.

To specify a data source to your report open the Report menu and select Data sources… menu
item. Then appears a dialog on you can add and remove data sources. To add a new data source
click the Add button and then select the data source type from the list of available data soure types.

6.12.1. data source types dialog

In our example we choose SQL query data source type. After you click OK button a new SQL query
data source will be added to the list in dialog panel. Then you can specify the data source options.
The following properties are available for data sources:

• data source ID. This string property is very important for identification purposes. You can refer
to the data source by this ID string.

• data source type The type of the data source you’ve chosen before. It is cannot be changed after
the data source added to the list

• Location type Location type is a property that describes where the data or the sql query can be
found, inside the report file or inside an external file. It’s value may be: Static, File, HTTP, FTP,
Parameter. HTTP and FTP type currently is not supported for SQL queries. For the different type

47

of data sources it means a bit different. For SQL query the Static location type is suitable, it
means that SQL query will be saved statically into the report file. Parameter type provides that
the data is added to NCReport by NCReportParamer. For example a QString Text or an SQL
query can be added as parameter to NCReport depending on the data source type.

• File name/URL In case non Static location type is selected, here you can specify the name of the
file that contains data. (URL address currently is not supported.)

• Connection ID This string property represents the ID of an SQL database connection. This name
just the same ID that is used in QSqlDatabase::addDatabase() function for identifying database
connection. When you add database connection in your application before running report, this
connection name you should specify.

• Use external connection If you want to make available the SQL data source to use it’s own
database connection, you may enable this checkbox. After, the external connection panel
becomes enabled and you can specify the required properties of sql connection: hostname,
database, username, password, port (optional).

• SQL query This text area in which you can edit the sql query expression. Almost every cases it is
a SELECT…FROM expression applying the SQL syntax of the specified database. Only one sql query
is allowed for the data source. SQL expression can contain Parameters, see later.

6.12.2. SQL data source

In our example we set the data source ID to data source1 (the default name) and choose Static
location type. We name the Connection ID Con0. After the SQL query must be specified.

48

This example requires a running MySQL database server with existing northwind
demo database and tables. For generating sample database and tables SQL script
file is attached with NCReport project

Let’s use this simple query:

SELECT ProductID, ProductName, QuantityPerUnit, UnitPrice,
QuantityPerUnit*UnitPrice as value
FROM products
WHERE ProductID>20
ORDER BY ProductName

The following buttons are available for apply or cancel settings: * OK Select to apply your data
source settings. * Cancel Closes the screen without saving any changes, returning you to the
designer desktop.

Validate the data source settings by clicking the OK button.

6.13. Assigning data source to the Detail
To assign the data source we defined before, open the Report menu and select Details and
grouping… menu item, then appears a dialog on you may manage the detail sections of the report.
A default Detail1 named detail is already defined. You can rename it to the name you want if you
change Detail ID. Select the previously defined data source from data source combo box. The combo
box contains all of defined data sources. This option must be specified for working of the report.

49

Here we summarize the options of Detail dialog: - Detail ID The name of the detail section. - Height
Height of the detail section in millimeters. To alter the height of theese sections you may use this
spin box. You can also change the height by mouse dragging or by geometry editor - data source
data source name assigned to the detail. Previously defined data sources can be selected in the
combo box - Data grouping By clicking this button the group management dialog of the
corresponding detail can be opened.

You can add more details by Add button or remove existing detail by Remove button. One detail
section must be existed, so it does not construe to remove the only one detail.

The following buttons are available for apply or cancel settings:

• OK Select to apply your settings.

• Cancel Closes the screen without saving any changes, returning you to the designer desktop.

Validate the detail settings by clicking the OK button.

6.14. Adding report items
After we defined the data source and specified the report options now we can design the report by
adding items to the specified sections. The Tools menu or the tool bar displays report items that can
be used when designing a report. Let’s summarize the various report items of NCReport:

Text label

The Label represents simple text or label items. Label items are used to display descriptive
information on a report definition, such as titles, headings, etc. Labels are static item, it’s values
don’t change when rendering the report.

Field

The Field is the matter of report items. It represents the data Field objects. By data type Fields
may be text, numeric and date. Field items are used for pulling dynamically generated data into
a report from the specified data source such as database the report generator uses. For example,
a Field item may be used to present SQL data, variables and parameters. NCReport handles data
formatting for the different type of fields like numbers or texts.

Line

The Line option enables you to create Line items. In general, Line items are used for drawing
vertical, horizontal lines for headings, underlining titles or so on. Lines are defined by it’s start
and the end point coordinates

Rectangle

The Rectangle enables you to create Rectangle items. Rectangles are usually used for drawing
boxes or borders around a specified area. Rectangle makes easier the box drawings instead of
drawing four lines.

Ellipse

The Ellipse item enables you to create circle or ellipse in report. Ellipses are mostly used for
drawing charts or borders around a text.

50

Image

The Image option enables you to create Image items. Image items are used to insert either static
or dynamic into a report definition. Static images such as a company logo often displayed in the
Report Header can be loaded from a static file or from report definition. Dynamic images can be
loaded from the specified SQL data source.

Barcode

The Barcode option enables you to create barcodes. Currently the EAN13 code format is
supported. Barcodes might be either static or dynamic items similar to images. Static barcodes
read it’s value from the report definition, dynamic barcodes are loaded from the specified data
source.

Custom item / Graph

Graph/Custom item is a special member of NCReport items. This option enables you to render a
QPainter drawn contents in reports using C++/Qt code. The typical field of application is using
this feature for rendering graphs or similar contents.

6.14.1. Adding heading Labels

First let’s add the labels that represent the column header of data rows. To create a new Label
object, first select the Label tool button or menu item in Tools menu. After that the cursor changes
to a cross beam, then click in the section of the report definition where you want the Label to be
located. (i.e. we add label to the report header.) Doing so will create the Label object in that section
and opens the Object settings dialog. On the dialog you may then set the Label object’s properties.

The following options are available for labels:

• Text Just enter here the text of the label

• Automatic word wrapping If this check box is enabled the text will be wrapped fitting to it’s size.

• Print when expression This is a logical expression which enables you to define when the Label
object is shown or not. See the details later.

6.14.2. Label dialog

51

The following buttons are available for apply or cancel settings: * OK Select to apply your label
settings. * Cancel Closes the screen without saving any changes, returning you to the designer
desktop.

Add the following labels to the Page Header: Product ID, Product name, Unit Qty, Unit price, Value
and move them by drag and drop to the place you want to be located. To move the added Label just
drag (select) it with left mouse button and drop it to the location you want. To delete a Label, select
it and press Delete button

6.14.3. Adding labels

6.14.4. Adding Line

To create a new Line object select the Line button in the tool bar or menu item in Tools menu. After
that the cursor changes to a cross beam, then click in the section of the report definition where you
want the line to be started and simply drag the line to the end position. To move the added line just
drag (select) it with left mouse button and drop it to the location you want. To delete the line just
select it and press Delete button

52

To open the line properties dialog just double click on the line, on the dialog you may then set the
object’s properties. In the dialog you are presented with the following options are available:

Print when expression

This is a logical expression which enables you to define when the Line object is shown or not.
See the details later.

6.14.5. Adding Fields

Now we have to add the most important items to the report. Field objects contain dynamic
information retrieved from a data source, parameter or a variable. To create a new Field object,
first select the Field tool button or the menu item in Tools menu. After that the cursor changes to a
cross beam, then click in the section onto you want the Field to be located. This section is in
generally the Detail section. Doing so will create the Field object in the specified section at that
position and opens the Field property dialog. On the dialog you may then set the Field’s properties.

The following options are available for fields:

Field source type

The combo box contains the possible sources from where the field can pull data. Field’s data can
be loaded form the following sources: data source, Parameter, Variable, System variable,
Expression. About various source types you can find informations in NCReport specification.

Field column/expression

This property represents the name of the data column from where field’s value are pulled.
When SQL query data source is used by the field, this name equals the corresponding SQL
column name included in SQL query. When other data sources such as Text, this value is often
the number of the data column.

Data type

The field’s base data type. The following data types are supported: Text, Numeric, Date, Boolean

Automatic word wrapping

If this check box is enabled the field will be wrapped fitting to it’s size.

QString::arg() expression

This is a string expression with %1 symbol for the same purpose what ::QString("String
%1").arg(value):: code does. The field’s value will be embedded into this expression.

Call function

This feature currently is unavailable.

53

Lookup class name

This feature currently is unavailable.

Print when expression

This is a logical expression which enables you to define when the Field is shown or not. See the
details later.

6.14.6. Field dialog

The following table summarizes the various formulas you can specify in fields as field column
expression. The formula depends on what field source type you use.

6.14.7. Field column formulas

Filed source type Field column formula Description

54

Data Source [data sourceID.]column The column equals a valid SQL
column name in your SQL
query. If data sourceID is
specified, the report engine will
assign the named data source
by this ID. If you don’t specify
data sourceID, the default
(currently processing) data
source is interpreted you have
assigned before to the detail.
The Data Source references can
contain also functions. Read
more in chapter Expressions.

Parameter parameterName The name/ID of the parameter

Variable variableName The name/ID of the variable

System variable variableName The name/ID of the system
variable.

Expression expression You can use even a complex
script expression for the field.
Both data source data,
Parameters, Variables can be
used in expressions. For more
informations about expressions
see the Using expressions
chapter.

Template template expression Template is a simple
substitution of report items
such as data source data,
parameter or variable. All of
them are joined into one string.

Some properties are available for different data types only. They are located on separated tab
widgets within the dialog. The following additive options are available for numeric fields:

Number formating

If this option is checked, the number formating will be turned on

Use localized settings

If this option is checked, the report engine will use localized number formats by the current
application’s QLocale settings.

Blank if value equals zero

If this option is checked, the field’s current value will not appear when it’s value equals zero.

Decimal precision

The number of digits after the decimal point.

55

Field width

Width of number in digits. Specifies the minimum amount of space that a is padded to and
filled with the character fillChar. A positive value will produce right-aligned text, whereas a
negative value will produce left-aligned text.

Format character

This one digit option specifies the format code for numbers. Possibly values are: e,E,f. With e,
E and f, precision is the number of digits after the decimal point. With 'g' and 'G', precision is
the maximum number of significant digits. Used by ::QString::arg(double a, int fieldWidth =
0, char format = 'g', int precision = -1, const QChar fillChar):: function.

Fill character

specifies the character the numeric value is filled with when formating. See QString::arg()
fillChar parameter.

6.14.8. Field dialog - numeric data

The following buttons are available for apply or cancel settings:

• OK Select to apply your field settings.

56

• Cancel Closes the screen without saving any changes, returning you to the designer desktop.

To continue our instance report, add the following (four) fields to the detail section. Use the
following names and data types in field column expression: ProductID (Numeric), ProductName
(Text), QuantityPerUnit (Numeric), UnitPrice (Numeric), Value (Numeric)

6.14.9. Details section with fields

6.14.10. Adding Variables for totals

Before we add variable field to the report, let’s see the handling of variables in NCReport. Variables
are special items used for providing counts and totals. Each of the variables have name, function
type, data type, and have an assigned data source column the variable based on. To add a variable
open the Report menu and select Variables… menu item. Then appears a dialog on you can
manage variables.

The following options are available for variables:

• Variable ID The name/ID of the variable.

• Variable expression This property represents the name of the data column from where
variable’s value is pulled from.

• Function type The function type of the variable. Supported function types: Sum, Count Count:
The COUNT type of variable will increment by 1 for every detail row. Sum: The SUM (summary)
variable will summarize the value of the specified data column returned by the field

• Reset scope If this check box is enabled the field will be wrapped fitting to it’s size.

• Initial value Initial value of the Variable

6.14.11. Variable dialog

57

The variables added to report are shown in the variable list view. Clicking on the list items the
selected item becomes active. To delete the selected item just select the Remove button. The
following buttons are available in the dialog:

Add

Adds a new variable and enable the variable options to edit.

Remove

Deletes the variable selected from the list

• OK Select to save your variable settings.

• Cancel Closes the dialog without saving any changes, returning you to the designer desktop.

Add a new variable by clicking the Add button and then specify the options by followings: Variable
ID: total_value, Variable expression: value, Function type: SUM, Reset scope: Group To add total
first, we should add a new group to the detail. In the next section we explain how to use the
grouping feature.

6.14.12. Adding group to detail

While most reports can be defined using a single Detail section having multiple columns and rows
of data, others - just like our example report - require summary data, totals as subtotals. For reports
requiring summary data, NCReport supports Group sections. Group sections have the following
characteristics:

• Always associated with a Detail section

58

• Defined by Group Headers and Group Footers

• Group Headers always print above it’s Detail section

• Group Footers always print below it’s Detail section

• Reference database column on which Group Headers and Group Footers will break

• Force new Group Header each time the value of the referenced column changes

• Force a new Group Footer each time the value of the referenced column changes

• Unlimited level of groups allowed

In the group dialog the groups added to the report are shown in the order you have added. The
added group sections will appear in the designer after you applied the group settings. Groups are
structured hierarchically. The first group will be the primary level of group, the second one is the
second level and so on.

To add a new group to the detail, open the Report menu and select Details and grouping…. Then
the Detail settings dialog will appear. Select the Detail1 detail in the list, then to open the grouping
dialog click on Data grouping… button. The Group settings dialog appeared, always belongs to the
previously selected detail. To add a new group click on the Add button.

The following additive options are available for a group:

• Group ID The name/ID of the group for identification purposes

• Group expression The name of the data source column the group is based on. If the value of this
referenced column changes, the group breaks. Also constant values such as 0 or 1 can be used
as group expression. Then the group will never break just ends. This could be very useful for
end-total fields.

• Header and Footer To enable or disable group header and footer, check on or off the specified
check box. To set initial height of these sections you can use spin boxes near the check boxes.

• Reset variables This list contains the variable names are available to reset when the group
ends. The variables that have Report reset scope status are visible only in the list.

6.14.13. Group dialog

59

The groups added to a detail appear in the group list. Clicking on the list items the selected item
becomes active. To delete the selected group just select the Remove button. The following buttons
are available in the dialog:

• *Add *Adds a group and enables the group options to edit.

• Remove Removes the group selected from the list

• OK Select to save your group settings.

• Cancel Closes the dialog without saving any changes, returning you to the Detail settings dialog.

So, let’s add a new group with the following specification: Group ID: Group0, Group expression: 0,
Show group header and footer, Reset total_value variable. After you select OK button, the new
group sections (header and footer) will appear in report document. Close the Detail settings dialog
by clickink OK button.

6.15. Adding total variable field
Now we have a defined group with header and footer. Group footers in general a sections are
usable for showing totals and subtotals. Let’s add a new field to the report footer with the following
parameters:

Field source type

Variable, Field column: total_value, Data type: Numeric

Now we have got almost all of fields we need. What we have to do also is just adding some missing
lines, labels and adjusting the report.

60

6.16. Other items
We summarize the tasks below:

• Add a Total value: Label to the report footer section near the total field.

• Add a Line above the totals.

• Move the items adjusted to the appropriate columns.

• Add a Line to the Page footer similar to the line in the Page header

• Add a Field to the Page footer: Field source type: System variable, Field column: pageno, Data
type: Numeric, QString::arg() expression: Page: %1

6.17. Adjustment and formatting
To finish the report now we can format and adjust the items. Here are tasks you should also do:

• Adjust the height of the sections for the fitting size by mouse dragging the base line of section or
by geometry editor. The height of the detail is important, since it is often recurred many times.

• Select the labels in Page header and set the font weight to bold by clicking the Bold tool button
in tool bar. Item multi-selection may used.

• Select ProductID field in Detail section and set its font weight to bold.

• Select and align right all of numeric fields to right by clicking the Align right tool button in tool
bar.

• Set the number format options for numeric fields: Number formatting: on, Decimal precision: 2

• Set also Use localized settings on for value and total_value fields

Save the report. Now you should get something similar this:

6.18. Report is ready

61

6.19. Adding Variables for Totals
Before we add variable field to the report, let’s see the handling of variables in NCReport. Variables
are special items used for providing counts and totals. Each of the variables have name, function
type, data type, and have an assigned data source column the variable based on. To add a variable
open the Report menu and select Variables… menu item. Then appears a dialog on you can
manage variables.

The following options are available for variables:

Variable ID

The name/ID of the variable.

Variable expression

This property represents the name of the data column from where variable’s value is pulled
from.

Function type

The function type of the variable. Supported function types: Sum, Count

Aggregate functions:

Count

The COUNT type of variable will increment by 1 for every detail row.

Sum

The SUM (summary) variable will summarize the value of the specified data column returned by
the field Reset scope` If this check box is enabled the field will be wrapped fitting to it’s size.
Initial value` Initial value of the Variable

6.19.1. Variable dialog

62

The variables added to report are shown in the variable list view. Clicking on the list items the
selected item becomes active. To delete the selected item just select the Remove button. The
following buttons are available in the dialog:

Add Adds a new variable and enable the variable options to edit. Remove: Deletes the variable
selected from the list

• OK Select to save your variable settings.

• Cancel Closes the dialog without saving any changes, returning you to the designer desktop.

Add a new variable by clicking the Add button and then specify the options by followings: Variable
ID: total_value, Variable expression: value, Function type: SUM, Reset scope: Group

To add total first, we should add a new group to the detail. In the next section we explain how to
use the grouping feature.

6.20. Running the report
For running report from the Designer window open Report menu and select Run report… menu
item. Then the report runner dialog will appear. You may add and remove parameters by
Add/Remove buttons. About parameters in example see the next section. Select the output where
you want the report to go to and then start the report by clicking OK button

63

Running the report to Preview window now you should see something similar:

6.20.1. Preview output - page 1

The second page:

6.20.2. Preview output - page 2

64

65

Advanced Features
To create more complex, professional reports, we need additional features and functions. This
section describes these important advanced functions of the NCReport reporting system.

66

Chapter 7. Data/Script Expressions
NCReport since 2.0 version can handle data or script expressions using Qt Script module the new
powerful feature of Qt>=4.3. Qt Script is based on the ECMAScript scripting language, as defined in
standard ECMA-262. Fields can even contain script codes instead of a simple data source column,
parameter or variable. In this case the report engine evaluates the specified script code each time
when the fields are refreshed. Report items can also have Print only when expression is true
(short name: printWhen) property. Print when expressions are script expressions too but they
must always return boolean result. To use script expression in fields you have to set Expression
field source type in the Field property dialog

In Qt6 version the Qt Script module is no longer available. Instead, the QJSScript
can be used, so the report script expressions are going to be based on QJSScript
(Qt’s Javascript Engine). The Javascript grammar is a little bit different than Qt
Script grammar. You may need to upgrade some script expressions in your report
if you migrate to Qt6

7.1. Using references in expressions
Expressions can contain the following references: Data source data, Parameter, Variable, Field
result. When expressions are evaluated the references always replaced with their current value.
The syntax formats of the references are the following:

Syntax Description

$D{[datasourceID.]column} Data source column reference. Returns the
current value of the data source column from
the current data row/record. If datasourceID is
not specified the default current data source
(what is assigned to the current detail) is
considered.

$P{parameterID} Parameter reference. Returns the value of the
parameter by name/ID

$V{variableID} Variable reference. Returns the current value of
the variable by name/ID.

$F{fieldID} Field reference. Returns the current display
value of the specified Field. FieldID is the auto
generated but editable ID value of the field
generated first when it’s added to a section.

If an expression contains any inserted reference with string/text type, quote marks
are needed at the beginning and the end of the token. For example:
"$D{ds.lastname}"=="Smith" You don’t need quote marks for numeric or boolean
values, for example $D{price}==750.0 is correct formula

67

7.2. References in templates
Template is a text in which you can simply embed any data reference without using script
formulas. Templates can be used in fields as a source type or in rich texts if template mode is on.

Example of using data references in templates:

First name: $D{datasource1.firstname} Last name: $D{datasource1.lastname} Date from:
$P{date_from}

7.3. Reference examples
Example of using script expression in fields

"$D{datasource1.productName}"+" first string "+" second string "+"$P{parametername}"

Example of using script expression as "Print only when expression is true" property. The
expression must return logical value.

$D{productPrice}<1500

Example of using data references in templates:

"Date period: $D{ds.datefrom} - $D{ds.dateto}"
"Dear $D{ds.firstname} $D{ds.lastname},"

7.4. Testing Field Expression
Now we try out how expressions are working with Fields. We use our last report example. Let’s
open the report in the designer and select the productName Field in the detail section. Open the
Field properties dialog by double clicking on the field item. Change the Field source type to
Expression and then the Field column expression we modify to the following script expression:

if ($D{ProductID}>40) "Product: "+"$D{ProductName}"; else "";

7.5. Field expression

68

In this case the report engine first replaces the references in the code and then evaluates the script
code before each rendering action. Close the dialog by clicking OK button and then save the report.
Now we just run report to preview window. Let’s see the result:

7.6. Result of field expression

This example is spectacular but not the most effective way of using expressions. In most cases when
you use expressions in fields you don’t need too complex code. If you need a condition by your field
should be visible or not, we recommend to use "Print only when expression is true" feature
instead. We test this feature in the next section.

7.7. Print When Expressions
This is always a logical script expression that returns true or false. It is considered only if defined
for a specified item or a section. When the PrintWhen expression is set the specified item (or
section) will be printed ONLY WHEN the expression returns true. As usual the expression can
contain any data source, parameter or variable reference.

Examples:

Hide an item when DataSource1.intcolumn data source value is less than 10:

69

$D{DataSource1.intcolumn}>=10

A boolean column print When example:

$D{DataSource1.boolcolumn}

Your item appears when DataSource1.stringcolumn is not empty:

"$D{DataSource1.stringcolumn}">""

7.8. Testing Print when expression
So, print when script expressions are codes that return boolean result. They often called as logical
expressions. To test it just open the Field properties dialog by double clicking on the same field
item. Type the following code to Print when logical expression:

$D{ProductID}>40

7.9. Print only when expression is true condition

Then modify the previous Field column expression by the following:

"Product: "+"$D{ProductName}"

After you validate the settings and save the report run the report again. We have to get the same
result.

7.10. Templates in Fields and Texts
Templates are special expressions when the data references are simply included in a text. It is not a
script hence you cannot use script language elements but data source, parameter and variable
references only. For example:

Customer name: $D{ds1.name} Address: $D{ds1.address}
Interval: $P{datefrom} - $P{dateto}

Template expressions are faster than script expressions because it requires no

70

evaluation but a simple insertion only.

7.11. Script expressions in special locations
Instead of data reference, parameter reference or variable, it is even possible to use script
expression at some special locations: as group expression, text item. This feature makes the
grouping or text manipulation even more flexible.

7.11.1. Script as group expression

If you want to use a direct script as group expression you can write a script expression between <%
%> markers. Having a single line property it’s not recommended to build too complex expression
here. Example:

<% if ($D{ds.age}<12) "KID"; else "MALE"; %>

You don’t need the markers if you assign to a pre-defined script expression:

$S{myscript}

7.11.2. Script in HTML Texts

The HTML text item has many flexible feature in terms of scripting. You can embed data references
or expressions if template mode is turned on. When you want to include a script expression within
a text you need to use the <% %> markers. Within the markers you can write a script, the result of
the script will be inserted into the text at the script location.

7.12. Data Source Functions
Field expressions can contain some simple function references. These functions helps to apply basic
operations on data or getting meta information from data sources. The functions can be data source
level and data column level functions. The function name you may insert after the data source ID or
the column ID depending on the function. It is separated by a dot character.

7.13. Data Source related (meta) functions
A data source function syntax:

DataSourceId.function()

In scripts or templates:

$D{DataSourceId.function()}

71

rowCount()

Returns the number of rows of the data source.

Example:

products.rowCount() or $D{products.rowCount()}

isAvailable()

Returns the isAvailable() method result of the data source class.

Example:

products.isAvailable() or $D{products.rowCount()}

isValid()

Returns the isValid() method result of the data source class.

Example:

products.isValid() or $D{products.isValid()}

isEmpty()

Returns true if the data source has no data record.

Example:

products.isEmpty() or $D{products.isEmpty()}

isNotEmpty()

Returns true if the data source has at least 1 data record.

Example:

products.isNotEmpty() or $D{products.isNotEmpty()}

update()

Forces the update() function on the data source. This can be useful if you may want to manually
update a user defined data source. This function use carefully.

Example:

products.update() or $D{products.update()}

72

7.14. Data Source Column related (Value) functions
The data source column functions are introduced for helping some basic text operation.

The data source column function syntax:

DataSourceId.column.function()

In a Detail section when using the assigned data source:

column.function()

In scripts or templates:

$D{DataSourceId.column.function()}

In a Detail section when using the assigned data source:

$D{column.function()}

MID(n,m)

Returns a string that contains n characters of this string, starting at the specified m position
index.

Example:

DataSource1.firstname.MID(2,5) or $D{DataSource1.firstname.MID(2,5)}

LEFT(n)

Returns a substring that contains the n leftmost characters of the string.

Example:

DataSource1.firstname.LEFT(3) or $D{DataSource1.firstname.LEFT(3)}

RIGHT(n)

Returns the isValid() method result of the data source class.

Example:

DataSource1.firstname.RIGHT(2) or $D{DataSource1.firstname.RIGHT(2)}

73

USERFUNC()

Executes the NCReportDataSource::getUserFunctionValue(value, arguments) method and returns
its value. You may want to use it a custom implemented data source.

Example:

DataSource1.lastname.USERFUNC() or $D{DataSource1.lastname.USERFUNC()}

74

Chapter 8. Script Editor
This function provides the ability to store predefined custom script functions within the report. The
goal of storing scripts in the report is to avoid duplicating script code assigned to report items or
anywhere in the report’s scope. For example, it can be used efficiently for "print when" expressions.

To reference the script anywhere in the report, use the following token: $S{scriptId} Where
scriptId is the ID you assigned to the script.

Use predefined scripts when you need to define complex code or use a script
expression more than once in a report. This is typically useful for multiple
instances of the same "print when" expression.

To define your scripts in the designer, open the Report > Scripts… menu item (the equivalent tool
button is found on the toolbar). A dialog will appear where you can add, edit, and remove scripts.
To add a new script, click the Add button and type the script ID. To remove a script, choose Remove.
If you want to use the expression builder, select Expression builder… to open the expression builder
dialog.

8.1. Script ID
The script identifier. When you call the script anywhere in the report, you can reference it with this
ID. For example: $S{myscript1}

8.2. Script Definition
Insert your code here. You can use any report data reference in the code according to the usual
rules of NCReport data reference.

8.3. Available Buttons
Apply

Select to apply your settings without closing the dialog.

75

OK

Select to apply your settings and close the dialog.

Cancel

Closes the editor without saving any changes, returning you to the designer desktop.

76

Chapter 9. Data Formatting
You can specify formatting options within fields. Fields support string, integer, float, date,
datetime data types. All of them often require formatting. NCReport can format data in fields, you
can set the format options in the Designer at the Field Settings Dialog → Text, Numeric,
Date/Time tabs depending on what data type we specify in the Data type option combo box.

9.1. Text formats
If the Data type is text use the Text tab for special format settings, The base (font, size, alignment)
settings can be done by the toolbars. We can specify the following parameters:

Vertical alignment

The vertical alignment of the text block: Top, Center, Bottom

Character length

We can explicitly set the string width (number of characters) if the fill character is going to be
used.

Rotation angle

The data can be rotated. 0 is the default position, 90 or 270 make the text vertical

Fill character

It’s possible to fill the empty characters with a specified character.

Capitalization

Mixed case (default), All uppercase, All lowercase, Small caps, Capitalize

Letter spacing

Spacing between letters in pixels: 0px is the default.

9.2. Numeric formats
If the Data type is numeric use the Numeric tab for special format settings is necessary. The base
(font, size, alignment) settings can be done by the toolbars. We can specify the following
parameters:

Numeric formatting

You can enable or disable the number formatting. It’s turned of by default.

77

Use localized settings

If this is turned on the number formatting gets based on the QLocale settings

Blank if value equals zero

if it’s turned on and the numeric data equals zero, it will show nothing, the zero value gets
hidden.

Substitution string if equals zero

Turn on this setting if you want to exchange the zero values to a string symbol. For instance you
can set '-'

Substitution string

You can specify the substitution string here.

Decimal precision

This integer number holds the number of decimal places. It is considered only if the formatting
is turned on.

Field width

Number field width in characters

Format character

Formatting character: f or g

9.3. Date Formats
In a Field you can of course represent a date or date time data. The date can be formatted in the
Field settings dialog at the Date/Time tab. You can specify the date format in two modes: statically
or dynamically

78

9.3.1. Static Date Format

The static date format is based on the Qt date format expression:

Expressio
n

Output

d The day as a number without a leading zero (1 to 31)

dd The day as a number with a leading zero (01 to 31)

ddd The abbreviated localized day name (e.g. 'Mon' to 'Sun'). Uses the system locale to
localize the name, i.e. QLocale::system().

dddd The long localized day name (e.g. 'Monday' to 'Sunday'). Uses the system locale to
localize the name, i.e. QLocale::system().

M The month as a number without a leading zero (1 to 12)

MM The month as a number with a leading zero (01 to 12)

MMM The abbreviated localized month name (e.g. 'Jan' to 'Dec'). Uses the system locale to
localize the name, i.e. QLocale::system().

MMMM The long localized month name (e.g. 'January' to 'December'). Uses the system locale to
localize the name, i.e. QLocale::system().

yy The year as a two digit number (00 to 99)

yyyy The year as a four digit number. If the year is negative, a minus sign is prepended,
making five characters.

9.3.2. Dynamic Date Format

The dynamic date format uses a format string from one of the data source types, it can be a
parameter, data source reference. Use one the normal data embedding formulas:

Example:

$D{ds.dformat} or $P{mydateformatparam}

79

The dynamic date format is recognized by the report engine and evaluated during rendering. It’s up
to you to use parameter or data source for storing a dynamic date format.

80

Chapter 10. Zones
This feature is available since version 2.2.0. Zones are virtual bands within a report section. All
items can have a specified Zone ID. Items with the same zone id, just like a group, represent a
horizontal zone as a virtual band inside the section. When the section’s automatic height option is
enabled, the report engine will process the rendering of zones in order by zone ID sequentially, one
after another. If a content of a zone is empty for example because the printWhen expression of all
items in the zone return false, then the zone won’t be printed and the section will be shrunken. The
rendering order of zones matches the order of zone IDs.

To set the Zone ID of a report item use the item property dialogs.

10.1. Zone ID in property dialog

10.2. Zones in Design mode

81

Example 1. Information

Zones are not visible in design mode. The specified region is determined by only the zone IDs
of the report items

82

Chapter 11. Dynamic data driven size and
position
This feature makes it easy for you to manage the position and the size of the report items
dynamically, driven by a data source, parameter or a variable or even a script expression.

For example it is possible to define the x, y coordinates of objects in the data source, then the
positions will be managed by data source. If you want to show graphical objects such as bar, line,
you can even use them for generating vertical charts.

To set the item’s dynamic position and size management in designer open any report item’s setting
dialog by double clicking on a report item. Then appears the item settings dialog. Choose the
[ Dynamic position ] tab of the bottom side property panel.

11.1. Dynamic position and size settings

You can set the following properties. If you leave an option empty - this is the default - the setting is
turned off and not considered. The values are always counted in millimeter and relative to their
container band’s coordinate system.

• X pos The source of item’s x position.

• Y pos The source of item’s y position.

• Width The source of item’s width.

• Height The source of item’s height

• Offset mode If this option is enabled then the positions are relative to the original static position,
otherwise they are explicit values.

83

Chapter 12. Dynamic data driven shape style
The shapes like line, rectangle, ellipse can also have dynamic style. It is possible for you to manage
the line width, line color and background color dynamically, driven by a data source, parameter or
a variable or even a script expression.

To set the shape item’s dynamic style in designer open any shape item’s setting dialog by double
clicking on an existing item. Then appears the item settings dialog. Choose the [ Dynamic style ] tab
of the bottom side property panel.

12.1. Dynamic style settings

You can set the following properties. If you leave an option empty - this is the default - the setting is
turned off and not considered. The width is counted in millimeter.

• Fill color The source of item’s background/fill color.

• Line color The source of item’s line color.

• Line width The source of item’s line width.

84

Chapter 13. Page Breaks
Normally the paging is automatic procedure of the report engine but there are various ways to
force a page break by an event or a logical expression in the report result. We have the following
options to do that:

13.1. Detail page break condition

A logical expression can be specified in Detail setting dialog › General tab › Page Break › Break
Condition If the current result of the expression gets true a page break is induced before the detail
section is printed.

13.2. Group page break condition
If you define a group in a detail section there is an additional option to break the page by a

condition. A logical expression can be specified in Detail setting dialog › Groups… › General tab ›
Page Break › Break Condition If the current result of the expression gets true a page break is
induced before the group header section is printed.

13.3. Report item page break
Any report item can cause a page break if we turn on the following item’s static property: Report

page break after printing this item In the designer you can turn on this switch by Report › Edit

selected item… › Identify Tab › Report page break after printing this item If this property is
turned on the report engine will break the page after this item gets rendered. Within a section the
report items are printed in ID order so users should be able to manage what items should already
been printed before the page break.

13.4. Report header page break
There is an option of the report header that can statically be turned on or off: Page break after this
section. If turned on the page breaks after printing the report header. This setting is at Section

properties › Options

85

Chapter 14. Text Document printout mode
TextDocument mode feature allows to render and print multi-page HTML QTextDocument based rich
texts. The text source can be a file or any data source, so the text can be static, dynamic or even a
static template filled with dynamic data. In this mode you can use only a page header, page footer
and one or more detail sections in the report definition. The result will be a multi page HTML text
correctly broken to pages, printer ready document. document. In TextDocument mode the
pagecount system variable can be used by default without any additional setting

14.1. Steps of usage
To create a text document printout report use the Designer application

• In the Designer select the menu:[ReportPage options] menu. Then the report page settings
dialog will appear. Set the menu:[Report type] combobox to [ Text document ]

• Add a text report item into (the only one) Detail section. Set the text’s properties by using its
property dialog. The text may come from any source as usual.

• Specify the report’s page header and footer (Not required)

In this mode, only one detail section within a single text item is supported. The
horizontal position and the width of the text item are maintained during
rendering.

14.2. Text Document printout report example
To see how it’s working try textdocument_printout.xml demo report. It prints a long Qt class
documentation HTML file.

86

Chapter 15. Data Relation system
This feature is also named as Sub-Query or Sub-Data Source system Database systems almost
always have master/detail data relation between tables. When defining reports for a typical kind of
documents such as invoices, orders etc. There are at least one header and a related detail data is
used which are linked via primary and foreign key. The goal of the data relation system that child
data sources are updated runtime row by row driven by a parent data source. This works by an ID
column which is the primary key of the parent and the foreign key of the child. The data source
relation is very useful option for SQL data sources where the data are fetched from database tables
via SQL command and for Item Model data sources as well where you can manage the data source
content from code.

The data source relation system currently works for SQL data source and Item
Model data source only. The other data source types are not supported by this
feature, expect the [ Item model ] data source.

The following example shows a 3 level parent/child structure.

In the the next section you can overview how to define the data sources of master/detail relation.
We will create a three level data source relation in the following example.

87

15.1. Defining a parent data source
You can add the master data source in Data Source settings Dialog. In the Designer select
menu:[ReportData sources…] and add a new SQL data source. Set the Opening role to [ Beginning
of the report ]. It means that the query will be executed only once at the beginning of the report.
Type the data source ID, set the connection properties and edit the SQL query in the SQL editor text
box.

This is our Northwind database example master query that queries the customers:

SELECT customers.CustomerID, customers.CompanyName, customers.CompanyName
FROM orders
INNER JOIN customers ON orders.CustomerID=customers.ContactName
WHERE OrderDate between '2005-03-01' and '2005-03-31'
GROUP BY CustomerID

15.2. Defining child data sources
At the same (Data source) dialog we have to add two more data sources within the parent/child
structure. Doing the first one add a new SQL data source again. Set the Opening role to [ Child
datasource (subquery) ]. It means that the query will be executed repetitively every time when
the next master record is processed. Type the [ data source ID ], set the connection properties in
the SQL connection tab. After type the [ Parent datasource id ] which is the ID of previously
defined parent data source. (customers)

Warning

The [ Parent datasource id ] is case sensitive. It must be equal to the already existed parent
data source ID

Edit the SQL query in the sql editor text box. This is the 1st child query, it queries the order headers
between a date period and is related to a customer:

SELECT OrderID,CustomerID,EmployeeID,OrderDate,ShipName
FROM orders
WHERE CustomerID='$D{customers.CustomerID}'
AND OrderDate between '2005-03-01' and '2005-03-31'
ORDER BY OrderID

As here can be seen, the data relation is managed by a data reference expression:
$D{customers.CustomerID} We have to insert the key value of parent data source into the SQL
command.

After comes the second child data source. This is the third level of the relation. Set the Opening role
to [ Child data source (sub-query) ] too and type the [ Parent data source id ] which is the ID of

88

its parent data source (orders). Edit the SQL query in the SQL editor text box. This query retrieves
order items are related to a specified order ID:

SELECT OrderID, orderitems.UnitPrice, Quantity, Itemno,
products.productname, orderitems.UnitPrice*Quantity as Value
FROM orderitems INNER JOIN products ON orderitems.productID = products.productID
WHERE OrderID=$D{orders.OrderID}
ORDER BY Itemno

At this level the data relation is managed by the following data reference expression:
$D{orders.OrderID} Accordingly the parent key will always be evaluated and the query is executed
when the parent key change occurs. (When its parent row is changed by report processor)

15.3. Setting up the detail section
In this step we have to assign the appropriate data source to the Detail section. Doing that open
menu:[ReportDetails and grouping…] menu (or the tool button on the toolbar), then appears the
Detail section properties dialog. Select the previously defined data source which is the lowest level
in hierarchy, in our example: [ items ].

When defining a sub-query, always the lowest level child query should be assigned
to the actual Detail section. This because the report engine handles sub-queries by
iterating on child level data source records.

15.4. Designing the report
After we defined the data sources and assigned them to the Detail we have to add the appropriate
groups also to the Detail by using [ Data grouping… ] button. As usual each data source level is
related to a group level.

Add the other report sections and report items and set the alignments. The following figure appears
the ready to run report. (The name of this example report file: list_of_orders_complex.xml)

15.5. Sub-query report example in Designer

89

The report preview result of our example looks like this: (The name of this example report file:
list_of_orders_complex.xml)

15.6. Result of a sub-query report example

90

15.7. Changes in 2.13 version
Data Source Relations has been extended from version 2.13. This is now much better supported
general feature. The function has been extended to Item Models. The reports that is created by the
old sub-query/relation system are not compatible anymore with the new version of data source
relation function.

The reports that uses sub-query function and created in previous version of
NCReport, must be upgraded. This function is not compatible with the old report
versions.

Changes in the function: (you have to change this in old reports)

91

• The detail’s data source must be the root parent data source

• All fields and expressions must have its data source identifier i.e: datasource.column

To use the new data source relation system follow these rules:

• A data source relation can be defined by simply set "child data source" and giving the parent
data source id. (as usual)

• 1 parent can have only 1 child (1 to many relation)

• You can specify the primary key column index. If a primary key column is defined for the
parent data source, you can use {PK} or {ID} expression in the child data source query. (This is
useful only in SQL data sources)

• If you assign a data source relation to a detail section always set the root parent data source to
the detail. In earlier version we had to set the last child data source, but it is outdated in 2.13.

• Use dataSourceUpdateRequest(const QString dataSourceID, const QString foreignKeyValue);
signal to handle data source updates.

• Use !$D{datasource.isEmpty()} print when expression of a detail section to hide the empty
children data

92

Chapter 16. Double pass mode
Double pass mode is a report option that influences the running mode of report engine. When
double pass mode is enabled the report is executed two times - this two running cycle is called
primary (test) and secondary (real) pass. When the two pass mode is necessary? In normal (1 pass)
mode the report generator simply runs the report without anticipatory counting and calculations
such as determining the total page numbers.

The pagecount system variable always returns zero in 1 pass (normal) mode. If the
pagecount system variable is needed you have to enable the double pass mode
option.

16.1. Setting double pass mode
The double pass option is part of the report options are saved into the report definition. To enable
or disable this option in Designer select ReportReport and Page Options… To read more: <xref
linkend='pagesettings'/>.

16.2. Example using of pagecount variable
Use $V{pagecount} expression as field in expression or template mode ore use in text in expression
mode

Expression mode example: $V{pagecount} Template mode example: Page $V{pagenum} of
$V{pagecount}

93

Chapter 17. Internationalization
Since version 2.5, reports have the ability to support multiple languages. This is an important aspect
for international applications. The goal of this feature is to allow fields and labels to store multiple
texts according to predefined languages.

17.1. Adding languages
• To set languages use Report and page settings menu and choose Language tab in the dialog.

• To add more languages select the language from combo box and add to language list using
[ Add ] button

Leave the Default language first in the list. This represents the original language
of the report.

• Set the Multi language role. If not all labels or fields are translated and the current language
translation is missing, two options can be chosen. In order to choose Use default language the
default text will appear otherwise the label or field will not be printed (This is the Leave blank
option)

17.2. Adding translations of Fields or Labels
Insert a Field or Label item as usual. The property dialog appears with tabs of each language that
was defined previously. Type the translations to the appropriate language tab control. Empty
translation tab means a missing translation.

94

17.3. Setting up the current language
The current language of the report can be set both in design mode and in running mode. In
Designer select Report language from the Report menu or the Languages tool button from the
toolbar and select the language what you want from the submenu

To set the language from application code use setCurrentLanguage(const QString & langcode)
function where langcode is the international two letter language code.

17.4. Setting up the language

NCReport* report = new NCReport(parent);
report->setLanguage("de");

To set the language from console running mode use -l command line parameter the international
two letter language code.

17.5. Setting up the current language from command
line

ncreport -f myreport.ncr -l de

95

Chapter 18. Sub-Report iteration
The feature called Sub-Report refers to a repeated report generation process that traverses a
dedicated data source. The data source type: subreport This approach is similar to the classic sub-
report model but supports only one level. It is particularly useful when a complex report or a
multi-detail report needs to be repeated while processing different data records. The function
utilizes a dedicated parent data source as the repetition source.

The Sub-Report function provides a great opportunity for creating simple one-to-many relationship
reports. Note that you shouldn’t set your master data source as child data source the report will
use the subreport data source for repeating the reports.

18.1. Sub-Report data source
To set the data source on which the iteration based, you have to add a data source to the report as
usual. Set the Opening role to Sub-Report iteration

18.2. Reference to master data source
You can place any reference to master data source in the SQL data source queries. For example:

SELECT product.name, product.code WHERE id=$D{master.id}

For non SQL data sources such as Item Model data source it is possible to use the SIGNAL/SLOT
mechanism. Use the following signal of NCReport object:

signals:
 void dataSourceUpdateRequest(const QString& dataSourceID, const QString&
data);

All data sources are updated repeatedly when a sub-report cycle begins, after the
last cycle finished, except the master data source. The function is similar to a
parent/child relation but not the same.

96

Chapter 19. Table View Rendering
Table View item is a report item destined to rendering QTableView tables with full WYSIWYG print
support or rendering an item model content. The function is originally aimed to print the tables in
the same rate as the existed QTableView screen widget. The table view item should follow the
formats of the original QTableView widget. The cells gets display outlook information from the
table’s item model. Some basic table settings such as header background, line type, line color, etc.
are currently fixed.

19.1. Adding TableView item
In Designer to add a TableView item into a section select the Table View tool button or menu item
from Tools menu. After the cursor changes to a cross beam click in the section where you want the
item to be located. The Table View item is created and its settings dialog appears.

It is strongly recommended to add Table View to a Detail section, not into the
headers or footers. Since the table may fill the available space both horizontally
and vertically, no other report items should add to this section. The table view has
its own data source assignment so it is independent from the data source of the
detail which should be unique and should have 1 record. You can use an 1 row
static text data in a detail section for tables.

Specify the same ID values in the Table View settings dialog that you will apply when setting the
table view and the model from code. The report engine will identify the objects by the specified IDs.

19.2. Table View Dialog

97

The dialog options are as follows:

• Item Model ID Identifies the model object pointer related to the QTableView.

• Table View ID Identifies the QTableView object pointer you want to render.

• Cell spacing Spacing value for cells. Has no affect.

• Show horizontal header If enabled then the horizontal table header will appear.

• Show vertical header If enabled then the vertical table header will appear.

• Elided text mode When this option is enabled the multi-line texts will not be rendered, but
partially the first line only with three dots.

• Pin to left The table will automatically be adjusted to the left margin.

• Pin to right The table will automatically be adjusted to the right margin.

19.3. Setting the object references
Use the following API functions for defining the QTableView object and its model for NCReport. You
have to set the appropriate IDs to identify the objects. This because it is possible to assign multiple
object pointers to NCReport. You don’t need this in design time but only when running the report.

NCReport* report = new NCReport(this);
report->addTableView(ui->tableView, "myView");
report->addItemModel(ui->tableView->model(), "myModel");

98

19.4. Example
The following example shows how a printed QTableView widget looks like on the screen. The table
is filled with test data and even images.

19.5. QTableView widget

19.6. QTableView table in print preview

99

19.7. Printing Item Model Based Table without
QTableView
It is also possible to render a table without having an existing QTableView widget (or any other
item view). In this scenario you have to set at least the item model Id you assign from code. The
table view ID you can leave empty. Without an item view the report engine tries to calculate the
optimal cell width and height based on the content.

Example code:

QStandardItemModel model(4, 4);
for (int row = 0; row < model.rowCount(); ++row) {
 for (int column = 0; column < model.columnCount(); ++column) {
 QStandardItem *item = new QStandardItem(QString("row %0, column %1").arg(row
).arg(column));
 model.setItem(row, column, item);
 }
}
NCReport* report = new NCReport(this);
report->setReportFile("mytablereport.ncr");
report->addItemModel(&model, "myModel");
report->runReportToPdfWriter("outputfile.pdf");

19.8. Custom Cell Content
It’s even possible to print custom defined cells (columns) in tables, for example graphical content.
To achieve this you need to implement a cell graph renderer api subclass. The base class is:
NCReportGraphRenderer The implemented subclass object can be added in

100

void setCellGraphRenderer(const QString id, int column);

Example implementation of a custom cell / column renderer class

#include "ncreportgraphrenderer.h"

class MyCustomCellRenderer : public NCReportGraphRenderer
{
public:
 MyCustomCellRenderer();
 virtual ~MyCustomCellRenderer() override;

 virtual void paintItem(QPainter* painter, NCReportOutput* output, const QRectF&
rect, const QString& itemdata) override;
};

#include "mycustomcellrenderer.h"
#include <QPainter>

MyCustomCellRenderer::MyCustomCellRenderer() {}

MyCustomCellRenderer::~MyCustomCellRenderer() {}

void MyCustomCellRenderer::paintItem(QPainter *painter, NCReportOutput *output, const
QRectF &rect, const QString &itemdata)
{
 Q_UNUSED(output)
 Q_UNUSED(itemdata)

 MyLogoPainter cp;
 cp.setMyProperty(50);
 cp.setState(MyLogoPainter::Basic);

 painter->save();
 cp.paint(painter, rect.toRect());
 painter->restore();
}

To assign your renderer, use the addItemRenderingClass API function:

MyCustomCellRenderer *renderer = new MyCustomCellRenderer();
renderer->setId("mycell");
...
NCReport* report = new NCReport(this);
report->addItemRenderingClass(renderer);

In the table setting dialog you need set the ID for the table item in the report:

101

19.9. Handle progress signal of table rendering
It is possible to connect the progress signal of the table rendering into a slot in your application.
This option can be useful in order to printing large tables. The signal is emitted row by row:

NCReport::dataRowProgress(int row)

102

Chapter 20. Cross-Tab Tables
Reports often contain tables or data presented in a tabular layout. Sometimes it’s necessary to
rotate results so that columns are displayed horizontally and rows are displayed vertically. This is
known as creating a PivotTable, a cross-tab report, or rotating data. In cross-tab tables, the data
source records are represented as horizontal columns, and the cross-tab rows are printed as data
source columns. Tables often include horizontal and/or vertical summarization as well.

A cross-table has a unique data source assigned. In the report, a unique data source needs to be
defined for the table. When the report generator renders cross tables, they behave as follows:

• Horizontally expandable: If the table is wider than the available space, it continues in a new
table below. Table columns are represented as data source records.

• Vertically expandable: Each row represents a data column from the specified data source and
can break into multiple pages.

20.1. Table Structure
Cross-tables are composed of cells, each with its own function depending on its location. The
primary elements of tables are the rows and columns. The following figures show the cross-tab row
and column structure with their named functions:

103

Table Rows

Table Columns

Cell Structure

The cell structure of cross-tables is as follows:

Cell Function Description

0 Corner header

1 Column header

2 Side summary header

3 Row header

4 Data

5 Side summary data

6 Bottom summary header

7 Bottom summary data

8 Cross summary data

104

20.2. Using Cross-Table in Designer
To add a cross-tab to a report, select the Cross table item from the toolbar or the Insert menu.

Cross-tab in Designer

This creates a new Cross tab object in the selected section at the clicked position and opens the
Cross table property dialog. In this dialog, you can set all the table’s properties.

Cross-tab settings dialog

105

The property dialog is divided into the following tabs: Table properties and Cell properties. You can
find the "Print only when expression" option at the bottom of the dialog. If a logical expression is
defined, the table will be shown or hidden based on the result of the expression.

20.2.1. Table Level Properties

• Table data source: ID of the defined data source related to the table. The selected data source
should be unique and independent from the data source of any detail because cross tables have
their own data processing.

• Hidden columns: Comma-separated list of valid data source columns we don’t want to show in
the table.

• Column title source: Data column ID of column header titles. If not specified, the column
numbers appear.

• Sizes and spaces: General sizes of cross-tab table elements.

◦ Column widths: General width of columns

◦ Row heights: General height of table rows

◦ Cell padding: Gap size inside the cells, equal to internal cell margin

◦ Cell spacing: Spacing size between the cells

◦ Table spacing: Spacing between the tables when the cross-tab is multi-line.

• Section sizes: Sizes of cross-tab table sections.

◦ Header column width: Width of the header (left/first) column

◦ Data column width: Width of data columns

◦ Total column width: Width of total/summary column, mostly the last, rightmost column

◦ Header row height: Height of the header (first) row

◦ Data row height: Height of the data rows

◦ Total row height: Height of the total/bottom summary row, mostly the last row of the table.

• Show table parts: Switches to enable or disable specified table parts.

◦ Column header: Show or hide column header

◦ Row header: Show or hide row header

◦ Bottom summary: Show or hide summary row

◦ Side summary: Show or hide side summary column

◦ Break table when page breaks: If enabled, the table can break within its rows when the page
breaks.

20.2.2. Cell Level Properties

The cell properties are related to the specified cells, represented by their function.

106

107

Chapter 21. Conditional Formatting
This feature enables the use of dynamic, data-driven text styles in reports based on the current
value of any data source columns, parameters, variables, or script expressions. Conditional
formatting is available for Labels or Fields only.

HTML texts can be dynamically formatted by embedding dynamic tags within HTML code. The
format definition is a code text with style tag symbols and expressions similar to generic CSS style
code. The style tag and its value/expression are divided by a colon. Each row represents one style
definition. Script expressions must be enclosed in curly braces.

21.1. Dynamic Style Tag Symbols

Tag symbol Description Examples

color: Text foreground color color:#ff0000,
color:$D{ds.color},
color:#{if($D{ds.price}>500)
"#ff0000";}

background-color: Text background color background-color:#ff0000,
background-
color:$D{ds.bgcolor}

font-family: Font family name font-family:Arial, font-
family::$D{ds.font}

font-bold: Font bold on/off font-bold:true, font-
bold:$D{ds.isBold}

font-italic: Font italic on/off font-italic:true, font-
italic:$D{ds.isItalic}

font-weight: Font weight integer value.
Higher value results in bolder
text.

font-weight:50, font-
weight:$D{ds.fweight}

font-underline: Font underline on/off font-underline:true, font-
underline:$D{ds.isUnderline}

font-size: Font size in points. Integer
value.

font-size:12, font-
size:$D{ds.size}

font-strikeout: Font strikeout on/off font-strikeout:true, font-
strikeout:$D{ds.fstrikeout}

letter-spacing: Text letter spacing value.
Greater value results in bigger
spacing

letter-spacing:1.5, letter-
spacing:$D{ds.letterspacing}

capitalization: Rendering option for text font
applies to. Integer value from 0-
4. Equals QFont::Capitalization
enumeration property

capitalization:$D{ds.cap}

108

21.2. Editing Style Code in Designer
To define conditional text formatting for a Label or a Field, click on the "Conditional formatting…"
button at the bottom of the item property dialog. Then the conditional format code dialog will
appear. Type or paste the format code while adhering to the syntax rules. Click [ OK ] to save the
code.

NOTE

Style tag and its corresponding value should be in one line! Multiple lines of style definitions
are not evaluated.

21.3. Default Style
If a condition (script or data) returns an empty value, the default style formatting option is applied.
The default style settings are what you set statically in the report as usual.

109

Chapter 22. General TEXT output
Text output is a very powerful feature in NCReport. The function provides the ability of generating
various kind of text outputs like HTML, XML, Plain text, etc. Text Output requires an additinal
template to be existed. Before running a report you have to specify the text template file as well.

TEXT output is generated very fast, because data is processed and substituted
directly into the text template without any graphical rendering.

22.1. Text template manager tags
The following manager keywords/tags are available when you create a text template. Each start and
end tags represents a specified section. Tags are enclosed in standard HTML comment tokens,
according to HTML

22.2. Text template tags

Tag keyword Description

<!-- BEGIN {DH} -→ Document header begins. Document means the
current text output. For example the HTML
header part.

<!-- END -→ Section ends

<!-- BEGIN {DF} -→ Document footer begins. For example the HTML
document footer part.

<!-- END -→ Section ends

<!-- BEGIN {PH} -→ Page header section begins.

<!-- END -→ Section ends

<!-- BEGIN {PF} -→ Page footer section begins.

<!-- END -→ Section ends

<!-- BEGIN {RF} -→ Report header section begins.

<!-- END -→ Section ends

<!-- BEGIN {RF} -→ Report footer section begins.

<!-- END -→ Section ends

<!-- BEGIN {D.DetailID} -→ Detail section begins. Section is identified by
DetailID

<!-- END -→ Section ends

<!-- BEGIN {GH.DetailID.GroupID} -→ Group header section begins. Section is
identified by both DetailID and GroupID

<!-- END -→ Section ends

110

<!-- BEGIN {GF.DetailID.GroupID} -→ Group footer section begins. Section is identified
by both DetailID and GroupID

<!-- END -→ Section ends

22.3. Examples
The following example shows how a typical usage of text template

<!-- BEGIN {DH} -->
SIMPLE TEXT REPORT OUTPUT
<!-- END -->
<!-- BEGIN {PH} -->
Customer ID Name Address

<!-- END -->
<!-- BEGIN {D.Detail1} -->
$D{custid} $D{custname} $D{address}
<!-- END -->

111

Chapter 23. Batch Report Mode
Batch report mode is a feature that enables running multiple reports into one output. Read more at
Part Using NCReport API [batch]

112

Chapter 24. Special Detail Sections
There are special features can be done with detail sections that might be is very useful sometimes.
It is possible to render some special details at non normal location, these functions are subdetail,
repeated detail or odd even content.

24.1. Sub (Detail) Sections
Sometimes a single report section (detail) is not enough to handle all contents, it would be good to
have one or more additional sections for adding more items. If we don’t use zones a section is the
least band area in which we can keep a group of items together on a page. Sub section is a
possibility of separating a simple detail section to an additional content area that is linked with its
parent section. The parent can be a detail or a group header (or anything else) The sub section is
always rendered below its parent. Using the printWhen option of the section we conditionally hide
/ show the section so this feature can make the report design very flexible.

24.2. Adding a Sub-Section
To add a sub section just open the menu::[Details & groups] and add a new Detail section. By default
a detail section needs to have an assigned data source, but a sub section doesn’t, you must set the
Parent Section ID on the Special tab. The ID is the string identifier of the section you want to link
with.

The sub section will appear just after its assigned parent regardless of the other details.

24.3. Example Sub-Sections

113

24.4. Odd / Even Pages
Odd / even page feature is a special use case of the sub-section. It is possible to create a report that
have have odd and even page after each other, especially another page content gets inserted at
every n or n+1 page. You can specify a dedicated detail section for representing an odd page or an
even page for this purpose.

To create odd or even page, add a new detail to your report and set one of the following identifiers
at Detail settings → Special tab Parent section ID It’s recommended to assign a dummy / one row
data source to such details, to ensure that their content gets printed only once.

{INSERT_EVEN} or {INSERT_ODD}

114

{INSERT_EVEN}

Represents a content that gets inserted at every even page

{INSERT_ODD}

Represents a content that gets inserted at every odd page

24.5. Repeated detail by constant or dynamic value
By default every detail section gets printed only one time per data source row but sometimes we
need to repeat the detail content more times in special circumstances for instance if we design a
report aimed to be such like ticket, barcode or label. To set the number of times the detail should be
repeated use the Detail settings → Special tab Repeat detail field. It’s possible to set and explicit
constant integer value or an integer data expression here. The feature works for normal detail
sections only.

Example: 5 or $P{numberofdetails}, or $D{num} …

115

Command Line Tool
This part specifies the report engine command line tool

116

Chapter 25. Command line client
NCReport engine is also available in command line client executable.

25.1. To run command line executable
Running the command line engine use the [ NCReport ] command in the installed /bin directory:

NCReport [options]

25.2. Command line options
-?, --help

Display this help

-v, --version

NCReport version

-f, --report-file [filename]

Name of the report definition XML file. If this is set, the report definition will be parsed from this
file instead of a database

q, --sql-driver [driver]

Qt sql driver name for database connection. Avaible drivers: QDB2, QIBASE, QMYSQL, QOCI,
QODBC, QPSQL, QSQLITE, QTDS

-h, --host [hostname]

Database host name or IP address (default is localhost)

-u, --user [username]

Database user login name

-p, --password [password]

Database user login password

-d, --database [dbname]

Database name to use

-pt --port [port]

Database port number

-c, --connection-id [id]

Sql connection name/id

-cs, --connect-string [string]

Joined connection string in [user]/[pass]@[host/sid] format

117

-co, --connect-option [opt]

Connect option string/id

-o, --output [output type]

Output types: print, preview, pdf, svg, html, image. Use [ print ] for send report to printer or
[ preview ] to show report in a preview window. The default output is preview

-of, --output-file [filename]

Output file name. Required for file based output types.

-n, --printer [printername]

Name of the target printer

--copies [1..50]

Number of copies in case output is printer

--force-copy

Use forced copy printing method. This is useful for documents in which has to be known the
number of current copy.

--nodialog

Runs report to default printer without showing printer dialog.

-dbid, --report-db-id [id]

ID number of the report definition (xml) text in a database record. If this is set the report
definition will be parsed from database/table/record instead of a file.

-par, --add-parameter [parametername],[value]

Adds a custom parameter to report. You must specify the value and name of the parameter
separated by comma. The $P{parametername} expression can be used in the report definition
(Example: firstname,Robert)

-l, --language [filename]

International 2 letters language code of the current report language Works only when the
specified language is defined in a multi lingual report.

-td, --template-dir [dir]

Sets default template directory when using additional files, such as charts. Works only when the
specified language is defined in a multi lingual report.

-hs, --htmlstrategy

HTML output generation strategy. 1 = section is translated as one table (default) 2 = sections are
always unique tables

-css, --css-file

HTML output style sheet file to be generated. If not set, the stylesheet is included in the target
HTML file.

118

Using NCReport API
This part shows how to implement NCReport API code in your application

119

Chapter 26. Using NCReport API
This chapter shows you how to use the report API from a C++ (Qt) application, how to create an
NCReport object and how to use it from your application. As we described earlier NCReport system
consists of two parts: Report renderer library and a report designer GUI application. Of course the
report engine can be used separately from Designer.

If you want to call NCReport from your application, first you have to integrate NCReport in your
project. There are several ways to do so:

• To add the whole sources to your project and build it together with your application.

• To use NCReport engine as shared library. For using NCReport library like other libraries in your
project you need to specify them in your project file. For more information see the Qt
documentation in qmake manual at chapter Declaring Other Libraries.

• Statically linking NCReport library for your project. For more information see the Qt
documentation in qmake manual at chapter Declaring Other Libraries

26.1. Project file settings
You have to add to your .pro file at least the following lines:

NCREPORT_LIBPATH = /home/ncreport/lib

CONFIG(release, debug|release) {
 win32|win64: LIBS += -L$$NCREPORT_LIBPATH -lNCReport2
 unix:!macx: LIBS += -L$$NCREPORT_LIBPATH -lNCReport
 else:macx: LIBS += -framework NCReport
}
CONFIG(debug, debug|release) {
 win32|win64: LIBS += -L$$NCREPORT_LIBPATH -lNCReportDebug2
 unix:!macx: LIBS += -L$$NCREPORT_LIBPATH -lNCReportDebug
 else:macx: LIBS += -framework NCReportDebug
}
INCLUDEPATH += /home/ncreport/include
...

26.2. Initialize NCReport class
This section covers the fundamental steps that most users should take when creating and using
NCReport class. We present each of the activities in the suggested order.

26.3. Include directives
To include the definitions of the module’s classes, use the following directive:

120

#include "ncreport.h"
#include "ncreportoutput.h"
#include "ncreportpreviewoutput.h"
#include "ncreportpreviewwindow.h"

26.4. Creating NCReport class
Create the report class just like as another QObject based class:

NCReport *report = new NCReport();

If the class has created earlier and passed as a parameter to your method in which you use the
report object you should initialize the report by calling reset() method. Otherwise, if creating a
new object in the scope, you don’t need to call the reset.

report->reset();

26.5. Connecting to SQL database
SQL connection is required only when your data source uses internal database connection. In other
words Internal connection means an already existing database connection which is established
before running the report. On the other hand reports can also use external (defined in the report /
built-in) connection as well. Other data sources don’t require database connection.

This example code shows a typical SQL database connection with error handling:

QSqlDatabase defaultDB = QSqlDatabase::addDatabase("QMYSQL", "myconn");

if (!defaultDB.isValid()) {
 QMessageBox::warning(0, "Report error", QObject::tr("Could not load database
driver."));
 delete report;
 return;
}
defaultDB.setHostName("host");
defaultDB.setDatabaseName("database");
defaultDB.setUserName("user");
defaultDB.setPassword("password");

if (!defaultDB.open()) {
 QMessageBox::warning(0, "Report error", QObject::tr("Cannot open database:")
+defaultDB.lastError().databaseText());
 return;
}

121

26.6. Setting the Report’s source
Report source means the way of NCReport handles XML report definitions, in other words the
source of report definition XML data. Report definitions may opened from a file - in most cases it is
suitable, but it can be loaded also from an SQL database’s table. For information of configuring and
using the different report sources see the parts 1-7

In current example we apply File as report source:

report->setReportFile(fileName);

This code is equivalent with this code:

report->setReportSource(NCReportSource::File);
report->reportSource()->setFileName(fileName);

26.7. Adding parameters
If your report uses parameters you have to add parameter object(s) to NCReport object before
running the report. To create and add a parameter do this:

report->addParameter("id", "value");

where ID is a QString, the value is a QVariant object.

26.8. Running the Report
Now we are ready to run the Report and catch the error message if an error occurs. There are at
least two ways to start running the report engine.

26.9. Running the Report by One Step
This running mode is the most simple but with less custom configuration is available.

// run report to printer
bool result = report->runReportToPrinter(1, true, parent);
// run report to pdf file
bool result = report->runReportToPDF("file.pdf");
// or
bool result = report->runReportToPdfWriter("file.pdf"); //recommended way
// run report to svg files
bool result = report->runReportToSVG("file.svg");
// run report to preview output
bool result = report->runReportToPreview();

122

// run report to QPrintPreview dialog
bool result = report->runReportToQtPreview();

This way, if we want to preview the report we also have to create and show NCReportPreviewWindow.
See the next section.

26.10. Running the Report in customized mode
This running report mode allows more flexible configuration. First we have to initialize the output
object, after the report is ready to run.

26.11. Initializing Report’s Output
The next issue is to create and specify the report’s output. As rendering target, NCReport applies a
class derived from NCReportOutput base class. There are pre-defined classes for the mostly used
outputs:

• NCReportPrinterOutput

• NCReportPreviewOutput

• NCReportPdfOutput

To define the specified output use a code similar to this:

NCReportOutput *output=0;

if (rbPreview->isChecked()) {
 output = new NCReportPreviewOutput();
 output->setAutoDelete(FALSE);
 report->setOutput(output);
} else if (rbPrinter->isChecked()) {
 output = new NCReportPrinterOutput();
 output->setCopies(1);
 output->setShowPrintDialog(TRUE);
 report->setOutput(output);
} else if (rbPdf->isChecked()) {
 QString fileName = QFileDialog::getSaveFileName(this, tr("Save PDF File"),
"report.pdf", tr("Pdf files (*.pdf)"));
 if (fileName.isEmpty()) {
 delete report;
 return;
 } else {
 output = new NCReportPdfOutput();
 output->setFileName(fileName);
 report->setOutput(output);
 }
}

123

26.12. Running the Report
Now we are ready to run the Report and catch the error message if an error occurs:

QApplication::setOverrideCursor(QCursor(Qt::WaitCursor));
report->runReport();
bool error = report->hasError();
QString err = report->lastErrorMsg();
QApplication::restoreOverrideCursor();

26.13. Previewing Report
If we specified NCReportPreviewOutput as report’s output, it does not run the preview form
automatically. After the report engine successfully done we need to initialize an
NCReportPreviewWindow* object for previewing. The following code shows the way of doing this. It is
suggested to catch the error first, before running preview dialog.:

if (error) {}
 QMessageBox::information(0, "Report error", err);
} else {
 if (rbPreview->isChecked()) {
 //-----------------------------
 // PRINT PREVIEW
 //-----------------------------
 NCReportPreviewWindow *pv = new NCReportPreviewWindow();
 pv->setReport(report);
 pv->setOutput((NCReportPreviewOutput*)output);
 pv->setWindowModality(Qt::ApplicationModal);
 pv->setAttribute(Qt::WA_DeleteOnClose);
 pv->exec();
 }
}

We must not delete the output object after we added to the
NCReportPreviewWindow object. The preview window will delete its output object
when destroys.

For the best performance and code quality we should not delete NCReport object
until we close preview dialog. Add the report object to the preview object by

report->setReport(NCReport* report);

If it’s done the printing from preview will result the original printout quality, since it will run
report again instead of printing the lower quality preview pages.

124

Since 2.8.4 version it’s possible to show the preview widget in dialog mode, just
like QDialog. NCReportPreviewMainWindow::exec() function shows the preview
window and keeps application event loop while preview. This is good when you
use a locally defined report object, because the report object will not be deleted
until user closes the preview window.

26.14. Deleting Report object
After report running action you may want to delete the report object. Note, that preview window
requires NCReport object to be existed. If NCReportPreviewWindow::exec() is used, then the
application event loop stops until the preview window gets closed.

delete report;

26.15. Using other data sources
NCReport allows you to use non SQL data sources of the likes of QString based text, QStringList, or
custom defined data source. Depending on the data source type, data may come from a File,
NCReportParameter or by another way.

26.15.1. QString based text data source

NCReport allows to use QString texts as simplest data source. Each text row represents one data
record (rows are separated by the linefeed character) and the data columns are separated by a
specified delimiter character. For column identification in fields use the number of the column as
reference in the report by the following:

0 for 1st column, 1 for 2nd column … etc. or col0 for 1st column, col1 for 2nd column … etc.

For using text data sources add a Text data source to your report in Designer. You have the
following ways:

• Storing a static text in report definition. For doing so, in Designer select Static location type and
add static text to the edit box by using the specified delimiter character.

• Using an existed text file. For doing so, in Designer select File location type and specify the name
of the text file you want to use. Also you must specify the delimiter character.

• Adding text to NCReport by NCReportParameter. For doing so, first add the data text as a
parameter to NCReport by addParameter() function. Select Parameter location type in Designer
and specify the ID of the parameter you have added. Also you must specify the delimiter
character.

Example of adding a QString text to NCReport as parameter and Tab character as column delimiter:

NCReport report;

125

QString data;

data += "1 \tChai \t16.0000\t1\t1540\t0\n";
data += "2 \tChang \t17.0000\t1\t 874\t0\n";
data += "3 \tAniseed Syrup \t 9.0000\t1\t1687\t0\n";
data += "4 \tChef Anton's Cajun Seasoning \t20.0000\t1\t1230\t0\n";
data += "5 \tChef Anton's Gumbo Mixj \t19.0000\t2\t1900\t0\n";
data += "6 \tGrandma's Boysenberry Spread \t21.0000\t2\t 520\t0\n";
data += "7 \tUncle Bob's Organic Dried Pears \t25.0000\t3\t 540\t0\n";
data += "8 \tNorthwoods Cranberry Sauce \t34.0000\t3\t 120\t0\n";
data += "9 \tMishi Kobe Niku \t72.0000\t3\t 130\t0\n";
data += "10 \tIkura \t26.0000\t3\t2247\t0\n";
data += "11 \tQueso Cabrales \t19.0000\t4\t 741\t0\n";
data += "12 \tQueso Manchego La Pastora \t32.0000\t4\t 512\t0\n";
data += "13 \tKonbu \t 5.0000\t4\t1470\t0\n";
data += "14 \tTofu \t21.0000\t4\t 978\t0\n";
data += "15 \tGenen Shouyu \t14.0000\t4\t1005\t0\n";

report.addParameter("data1", data);

26.15.2. QStringList data source

NCReport allows you to use also QStringList as a data source. First you should define a QStringList.
Each QStringList item represents one data record and the data columns are separated by a specified
delimiter character.

For column identification in fields use the number of the column as reference in the report by the
following:

0 for 1st column, 1 for 2nd column … etc. or col0 for 1st column, col1 for 2nd column … etc.

For using QStringList data sources add a StringList data source to your report in Designer. You can
only use Static location type since QStringList can be added to NCReport by one mode only: using
addStringList() function. You have to specify an id with the list for identifying purposes.

Example of using QStringList as data source:

NCReport report;

QStringList list;
list << "24|Renate Moulding|Desert Hot Springs,CA|1|2008-01-01";
list << "78|Alfred Muller|Miami Beach, FL|1|2008-01-03";
list << "140|Angela Merkel|Munchen, Germany|1|2008-01-07";
list << "139|Bob Larson|Dallas, TX|0|2008-01-20";

report.addStringList(list, "sl0");

126

26.15.3. Item Model data source

Item/Model/View architecture is a very useful new feature of Qt4. NCReport allows you to use a
data source based on QAbstractItemModel. First you have to create your item model. Each model
row represents one data record. For column identification in fields use the number of the column
as reference in the report by the following:

0 for 1st column, 1 for 2nd column … etc. or col0 for 1st column, col1 for 2nd column … etc.

For using Item Model data sources add an Item Model data source to your report in Designer. You
can only use Static location type, other locations are undefined. In your code add the Item model to
NCReport using addItemModel(…) function. You have to specify an id to the model for identifying
purposes. The same ID you must specify for item model data source in the designer.

Example of using Item Model as data source:

QStandardItemModel *model = new QStandardItemModel(2, 4);
QStandardItem *item =0;

// -----------------------------------
item = new QStandardItem();
item->setData(1, Qt::EditRole);
model->setItem(0, 0, item);

item = new QStandardItem();
item->setData("Chai", Qt::EditRole);
model->setItem(0, 1, item);

item = new QStandardItem();
item->setData(16.0, Qt::EditRole);
model->setItem(0, 2, item);

item = new QStandardItem();
item->setData(1540.0, Qt::EditRole);
model->setItem(0, 3, item);

// -----------------------------------
item = new QStandardItem();
item->setData(2, Qt::EditRole);
model->setItem(1, 0, item);

item = new QStandardItem();
item->setData("Chef Anton's Cajun Seasoning", Qt::EditRole);
model->setItem(1, 1, item);

item = new QStandardItem();
item->setData(20.0, Qt::EditRole);
model->setItem(1, 2, item);

item = new QStandardItem();

127

item->setData(1230.0, Qt::EditRole);
model->setItem(1, 3, item);

report.addItemModel(model, "model1");

26.16. Custom data sources
NCReport allows you to create your own data source by subclassing NCReportdata source abstract
class. By this way you can use anything as data for NCReport. You only have to implement the the
required class methods. For adding your class to NCReport use addCustomdataSource() function. The
following example demonstrates the way of defining and using custom data source class:

26.16.1. Declaration

#include "ncreportdatasource.h"
#include <QDate>

struct TestData {
 int id;
 QString name;
 QString address;
 bool valid;
 QDate date;
};

class TestDataSource : public NCReportDataSource
{
Q_OBJECT
public:
 TestDataSource(QObject *parent=0);
 TestDataSource() {}

 void addData(const TestData&);

 bool open();
 bool close();
 bool first();
 bool last();
 bool next();
 bool previous();
 int size() const;
 QVariant value(const QString&) const;
 QVariant value(int) const;
 bool read(NCReportXMLReader*);
 bool write(NCReportXMLWriter*);
private:
 QList<TestData> list;

128

};

26.16.2. Implementation

TestDataSource::TestDataSource(QObject * parent) : NCReportDataSource(parent)
{
 data sourcetype = Custom;
 location = Static;
 recno =0;
}

bool TestDataSource::open()
{
 if (list.isEmpty()) {
 error->setError(tr("No data in TestDataSource data source"));
 return false;
 }
 recno =0;
 m_opened = true;
 return true;
}

bool TestDataSource::close()
{
 recno =0;
 m_opened = false;
 return true;
}

bool TestDataSource::next()
{
 recno++;

 if (recno >= list.count()) {
 recno--;
 flagEnd = true;
 return false;
 }

 flagBegin = false;
 return true;
}

int TestDataSource::size() const
{
 return list.count();
}

129

bool TestDataSource::prevoius()
{
 recno--;

 if (recno < 0) {
 recno = 0;
 flagBegin = true;
 }
 return true;
}

bool TestDataSource::first()
{
 recno=0;
 return true;
}

bool TestDataSource::last()
{
 recno = list.count()-1;
 return true;
}

QVariant TestDataSource::value(const QString & column) const
{
 if (column == "id")
 return value(0);
 if (column == "name")
 return value(1);
 if (column == "address")
 return value(2);
 if (column == "valid")
 return value(3);
 if (column == "date")
 return value(4);
 else
 return QVariant();
}

QVariant TestDataSource::value(int column) const
{
 QVariant v;
 switch (column) {
 case 0: v = list.at(recno).id; break;
 case 1: v = list.at(recno).name; break;
 case 2: v = list.at(recno).address; break;
 case 3: v = list.at(recno).valid; break;
 case 4: v = list.at(recno).date; break;
 }
 return v;
}

130

bool TestDataSource::read(NCReportXMLReader *)
{
 return true;
}

bool TestDataSource::write(NCReportXMLWriter *)
{
 return true;
}

void TestDataSource::addData(const TestData & data)
{
 list.append(data);
}

26.16.3. Using the TestDataSource class

Now we have to take our TestDataSource class. For using the TestDataSource data source add a
Custom data source to your report in Designer. You can only use Static location type for this data
source. Specify the class ID id with the list for identifying purposes both in Designer and in the class
by setID() function.

NCReport report;

TestDataSource *ds = new TestDataSource();
ds->setID("cds0");

TestData d1;
d1.id = 123;
d1.name = "Alexander Henry";
d1.address = "HOT SPRINGS VILLAGE, AR";
d1.valid = true;
d1.date = QDate(2008,01,10);
ds->addData(d1);

TestData d2;
d2.id = 157;
d2.name = "Julius Coleman";
d2.address = "Coronado, CA";
d2.valid = false;
d2.date = QDate(2008,01,12);
ds->addData(d2);

TestData d3;
d3.id = 157;
d3.name = "Peter Moulding";
d3.address = "San francisco, CA";
d3.valid = true;

131

d3.date = QDate(2008,01,07);
ds->addData(d3);

report.addCustomDataSource(ds);

26.17. Custom items in NCReport
Custom items are powerful members of the report system. Custom item feature enables you to
render special, custom defined contents in reports. The typical field of application is using this
feature for rendering graphs or such kind of contents.

• Add a Graph (Custom) item into your report in the designer and specify the size and the location
of the object. Specify the class ID of the item. This ID is used for identification.

• Subclass NCReportAbstractItemRendering class and implement its paintItem method.

• Set the ID of your class for identification by setID() function.

• Add your item class to NCReport by using addItemRenderingClass() function.

Let’s take an example for custom item class:

26.17.1. Declaration

#include "ncreportabstractitemrendering.h"

class TestItemRendering : public NCReportAbstractItemRendering
{
public:
 TestItemRendering();
 ~TestItemRendering();

 void paintItem(QPainter* painter, NCReportOutput* output, const QRectF& rect,
const QString& itemdata);
};

26.17.2. Implementation

#include "testitemrendering.h"
#include "ncreportoutput.h"

#include <QPainter>
#include <QColor>

TestItemRendering::TestItemRendering()
{
}

TestItemRendering::~ TestItemRendering()

132

{
}

void TestItemRendering::paintItem(QPainter * painter, NCReportOutput* output, const
QRectF & rect, const QString & itemdata)
{
 switch (output->output()) {
 case NCReportOutput::Printer:
 case NCReportOutput::Pdf:
 case NCReportOutput::Preview:
 break;
 default:
 return;
 }

 const int numcols = 10;
 const int cw = qRound(rect.width()/numcols);
 painter->setPen(Qt::NoPen);
 int ch=0;
 QColor color;
 color.setAlpha(128);

 for (int i=0; i < numcols; ++i) {
 if (i%3 == 0) {
 color.setRgb(0xAAAAFF);
 ch = qRound(rect.height()*0.8);
 } else if (i%2 == 0) {
 color.setRgb(0xAAFFAA);
 ch = qRound(rect.height()*0.4);
 } else {
 color.setRgb(0xFFAAAA);
 ch = qRound(rect.height()*0.6);
 }
 painter->setBrush(QBrush(color));
 painter->drawRect(rect.x()+i*cw, rect.y()+qRound(rect.height())-ch , cw, ch
);
 }

 painter->setPen(QPen(Qt::black));
 painter->setBrush(Qt::NoBrush);

 painter->drawRect(rect);

 painter->setFont(QFont("Arial",8));
 painter->drawText(rect, Qt::AlignHCenter | Qt::AlignVCenter | Qt::TextWordWrap,
 QString("GRAPH EXAMPLE: %1").arg(itemdata));
}

133

26.17.3. Using the class

NCReport report;

TestItemRendering *irc = new TestItemRendering();
irc->setID("testitem0");
report.addItemRenderingClass(irc);

26.18. Batch report mode
Batch report mode is a feature that enables running multiple reports into one output. Batch mode
makes possible to join two or more reports in a specified order and run them as one report. Page
numbering doesn’t change, each member reports keep its own number of pages. In reports the
reportno and reportcount system variables can be used for determining the current report number
and the total number of reports in batch.

26.18.1. Using batch mode

Batch mode is enabled when a report XML definition string is added by addReportToBatch(…)
function. This example shows how we can easily prepare a batch report from existing report files.

...
report->clearBatch();
QString report1;
Utils::fileToString("/home/anywhere/report1.xml", report1);
report->addReportToBatch(report1);

QString report2;
Utils::fileToString("/home/anywhere/report2.xml", report2);
report->addReportToBatch(report2);

QString report3;
Utils::fileToString("/home/anywhere/report3.xml", report3);
report->addReportToBatch(report3);

The order of reports in batch equals the order of applied addReportToBatch(…) commands

134

Specification
This document is essentially a specification of NCReport Reporting System XML template structure.
This is a brief documentation of report definition XML file structure.

135

Chapter 27. Specification
Report XML template structure specification

27.1. Data sources
Since the report generator builds a printable representation of data from data, the the data source
is one of the most important parts of the system. Data may come from an SQL query using Qt’s
database SQL database connection drivers or from other sources: Text, XML, String list, Item
model or custom defined data source written in Qt/C++. One report can contain multiple data
sources and each details can be connected it’s own data source. Whenever a data source is not
assigned to any detail, the initial (first) row of data in the data source is considered

27.1.1. SQL data source

SQL queries (sql data source) are the most common and widely used data sources for NCReport. It
requires an SQL database connection using Qt’s database driver plugins. The database connection
can be either internal or external.

For an internal connection (the default), a valid database connection must be established by the
application using NCReport before running the report. If an external connection is used, the
connection parameters must be specified accordingly.

XML syntax

<datasource>[SQL query]</datasource>
<datasource>[query filename]</datasource>

Tag properties

id

data source ID. Identification name of the data source. Details are assigned to data source by this
ID.

type

Specifies the data source type. Equals SQL for SQL data sources. Possible values are:
SQL,txt,xml,list,model,custom

source

The source of the data source definition. Depending on this option the SQL query is stored and
read from the report definition or from a specified file. Possibly values are:
static,file,parameter

connection

Specifies the SQL database connection handling method. Possibly values are: internal,external
With internal (the default) connection a valid database connection must be established by the
application uses NCReport before running the report. If external connection is specified, the

136

report generator connects to the database when opening the data source. If this occurs the
host,database,user,password,port possible connection parameters are used.

connID

The database connection’s name that is used when the QSQLDatabase::addDatabase(…)
method is called in the report engine. This ID is required for running SQL query which is
assigned to the data source

parentID

If the data source is a sub-item of a parent data source (sub-query system) then this ID equals to
the ID of parent data source. Valid for SQL data sources only

driver

The name of the Qt’s SQL database driver. The possible values are: QDB2, QIBASE, QMYSQL,
QOCI, QODBC, QPSQL, QSQLITE2, QSQLITE, QTDS

host

Host name for SQL database connection. Used only when external connection is defined.

database

Database name for SQL database connection. Used only when external connection is defined.

user

Host name for SQL database connection. Used only when external connection is defined.

password

Password for SQL database connection. Used only when external connection is defined.

port

Port number for SQL database connection. Used only when external connection is defined.

27.1.2. Text data source

Texts, text files, are able to be as a data source for NCReport. The data columns of a text are usually
delimited by tab or other delimiter character. Even it’s possible to avoid SQL database connection
when using this kind of data source. It’s necessary to set the delimiter type, this delimiter separates
the columns and each row represents a data record. Text data sources can be static, stored in XML
definition or can be a file

XML syntax

<datasource>[static text]</datasource>
<datasource>[filename]</datasource>

Tag properties

137

id

data source ID. Identification name of the data source. Details are assigned to data source by this
ID.

type

Specifies the data source type. Equals txt for text data sources.

source

The source of the data source definition. Depending on this option the text is stored and read
from the report definition or from a specified file. Possibly values are: static,file

27.1.3. XML data source

Extensible Markup Language (XML) format is also can be a data source for NCReport. If using

The following example shows how the data structure should look like

Example

<textobject><textdata fileref="codes/xmltestdata.xml" /></textobject>

XML syntax

<datasource>...</datasource>

Tag properties

id

data source ID. Identification name of the data source. Details are assigned to data source by this
ID.

type

Specifies the data source type. Equals xml for XML data sources.

27.1.4. String list data source

It’s possible to use also QStringList as data source for NCReport. Before running report, a
QStringList must be assigned to the specified data source and also is necessary to set a delimiter
character for separating columns in each list item that represents a data record.

XML syntax

<datasource></datasource>

138

Tag properties

id

data source ID. Identification name of the data source. Details are assigned to data source by this
ID.

listID

ID of the list. This identification name specifies the id of the
<classname>QStringList</classname> added to NCReport.

type

Specifies the data source type. Equals **list for string list data sources.

27.1.5. Item model data source

Qt’s item model classes provide a generic model for storing custom data. For example
<classname>QStandardItemModel</classname> can be used as a repository for standard Qt data
types. It is one of the Model/View Classes and is part of Qt’s model/view framework. It’s possible to
use item models as data source for NCReport. Before running report, a
<classname>QAbstractItemModel</classname> based class must be created and assigned to the
specified data source.

XML syntax

<datasource></datasource>

Tag properties

id

data source ID. Identification name of the data source. Details are assigned to data source by this
ID.

modelID

ID of the model. This identification name specifies the id of the Model added to NCReport.

type

Specifies the data source type. Equals model for item model data sources.

27.1.6. Custom data source

Often data is stored in special repository such as lists, arrays etc. You can build your custom data
source class derived from <classname>NCReportdata source</classname> base class. It is an abstract
class - you just have to implement the required methods.

27.2. Report sections
Report sections are the representations of the function specific areas inside the report. The whole

139

report is builded from sections. They are often a recurring areas such as detail, headers and footers.
The most important section is called Detail since details can contain the fields are changed row by
row. Each sections can contain all kinds of report items. Item’s coordinates are always relative to
it’s parent section.

One report can contain the following sections: Report header, report footer, page headers, page
footers, group headers and footers and details

27.2.1. Page header

Page headers is used to contain page headings. Page headers have the following characteristics: *
Always print at the top of a page* Always contain the first information printed on a page* Only
display one (current) row of data returned by a data source * Only one allowed per page

XML syntax

<pageheader>...</pageheader>

Tag properties

height

The height of the page header section in millimeters

27.2.2. Page footer

Page Footer are commonly used to close the pages. Page footers have the following characteristics:

• Always print at the bottom of a page* Only display one (current) row of data returned by a data
source* Only one allowed per page

• Page footer is usually used to display informations like number of the page, report titles and so
on.

XML syntax

<pagefooter>...</pagefooter>

Tag properties

height

The height of the page footer section in millimeters

27.2.3. Report header

Report header is used to contain report headings. Report header has the following characteristics:

• Always printed after the page header

140

• Report header is printed only once at the begining of the report

• Displays only one (current) row of data returned by a data source

XML syntax

<reportheader>...</reportheader>

Tag properties

height

The height of the report header section in millimeters

27.2.4. Report footer

Report footer is commonly used to close the report. Report footer has the following characteristics:

• Always printed before the page footer at the end of the report

• Only display one (current) row of data returned by a data source

• Only one allowed per report

XML syntax

<reportfooter>...</reportfooter>

Tag properties

height

The height of the report footer section in millimeters

27.2.5. Details

The core information in a report is displayed in its Detail section. This section is the most important
part of the report since it contains the row by row data from the data source Detail section have the
following issues:

• Generally print in the middle of a page* Always contain the core information for a report

• Display multiple rows of data returned by a data source* The detail sections generally contains
fields or dynamic objects.

• Multiple independent details are allowed in one report, each detail after the other* Each detail
is assigned to one specified data source

XML syntax

<detail>...</detail>

141

Structure:

<details>
 <detail>
 <items>...</items>
 <groups>...</groups>
 </detail>
 <detail>
 <items>...</items>
 <groups>...</groups>
 </detail>
 ...
</details>

Tag properties

id

Name/ID of the detail for identification purposes

height

The height of the group header section in millimeters

data source

The data source name/id the detail section is assigned to

27.2.6. Group sections

While most reports can be defined using a single Detail section having multiple columns and rows
of data, others require summary data - such as subtotals. For reports requiring summary data, the
report writer supports Group sections. Group sections have the following characteristics:

• Always associated with a Detail section* Defined by Group Headers and Group Footers

• Group Headers always print above it’s Detail section* Group Footers always print below it’s
Detail section

• Reference database column on which Group Headers and Group Footers will break

• Force new Group Header each time the value of the referenced column changes

• Force a new Group Footer each time the value of the referenced column changes

• Unlimited level of groups allowed

The groups added to XML definition are shown in the order you have added. They are structured
hierarchically. The first group will be the primary level of group, the second one is the second level
and so on. The added group sections will appear in the designer after you applied the group
settings.

142

XML syntax

<groups>
 <group>
 <groupheader>...</groupheader>
 <groupfooter>...</groupfooter>
 </group>
</groups>

Tag properties

id

Identification label for naming the group

groupExp

Group expression or data source column. Specifies the name of the data source column on
which Group Headers and Group Footers will break. The expression also can be a constant
value, in this case the detail row won’t break. The constant group expression: %CONST

resetVariables

The variable list appears the existed variables in the report. Just select the items represent the
variables will be reset when the current group ends. Selecting the specified variables is very
useful when for example you want to reset a total or a count variable.

reprintHeader

Item’s Y coordinate in millimeter within the current section.

27.2.7. Group header

Group headers are used to contain group heading items such as column head titles or so on. They
are always printed above it’s Detail section. A new Group Header is forced each time the value of
the referenced column changes.

XML syntax

<groupheader>...items...</groupheader>

Tag properties

height

The height of the group header section in millimeters

27.2.8. Group footer

Group footers are used to contain group footing items such as totals, subtotals. They are always
printed below it’s Detail section. A new Group Footer is forced each time the value of the referenced
column changes.

143

XML syntax

<groupfooter>...items...</groupfooter>

Tag properties

height

The height of the group footer section in millimeters

27.3. Report Parameters
Parameters are data pulled from outside of the report generator. The application that calls
NCReport object passes informations as parameter to NCReport class by addParameter(…) method.
Parameters are evaluated within SQL queries and fields or script expressions. Field objects may
have a parameter data source type, so they can be presented as data in the report. Parameters
mostly used in queries. If you want to embed a parameter into the query or an expression use this
syntax:

$P{parametername}

Example of using parameter in SQL query:

SELECT productId, productName FROM db.products WHERE primaryKey=$P{parametername}

27.4. Variables
Variables are specific items of the report. Variables are special fields used for providing counts and
totals. Each of the variables have name, function type, data type, and have an assigned data source
column the variable based on. We will explain what the different function types mean:

Count

The [ COUNT ] type of variable will increment by 1 for every row returned by a query.

Sum

The [ SUM ] (summary) variable will summarize the value of the specified data source column. It
requires numeric field type. To embed a parameter into an expression use this syntax:

$V{variablename}

27.5. System Variables
System variables are special variables that provide some report system informations such as page
number, current date/time etc. for fields Names of available system variables are:

144

pageno

Returns the current page number

pagecount

Returns the count of total pages of the report. Works only for Text document printout mode.

forcecopies

Returns the number of total force copies

currentcopy

Returns the current number of force copy

currentrow

Returns the current detail row number

date

Returns the current date

time

Returns the current time

datetime

Returns the timestamp

appname

Returns the name of this application

applongname

Returns the long name of this application

appinfo

Returns the full info string of this application

appversion

Returns the version of this application

appcopyright

Returns the copyright info of this application

qtversion

Returns the Qt version

os

Returns the operation system

For variable fields or to embed a parameter into an expression use this syntax:

145

$V{systemvariablename}

27.6. Expressions
NCReport since 2.0 version handles script expressions using Qt Script the new powerful feature of
Qt 4.3. Qt Script is based on the ECMAScript scripting language, as defined in standard ECMA-262.
Fields and group expressions may are script codes instead of data source column. The report
engine evaluates the specified script code in each time when fields are refreshed. Report items can
have printWhen property. They are also script expressions that return boolean result. To use script
expression in fields the ftype="exp" field property must be specified.

27.7. References in expressions
Expressions can contain and evaluate references such as

• data source data

• parameter

• variable

The references are always replaced to their current value before the exression is evaluated. The
syntax of referneces are the following: $D{[data source.]column[,n]} data source column reference.
Returns the current value of the data source column from the current row/record. If data source. is
not specified the current data source (assigned to the current detail) is interpreted.

If <parameter>n</parameter> is specified then first, the data source will be positioned to
<parameter>n</parameter> th. record. Works only if the ::seek(int) method is defined in the
appropriate data source class.

$P{paramatername}

Parameter reference. Returns the value of the parameter by name/ID

$V{variablename}

Variable reference. Returns the current value of the variable by name/ID.

27.8. Using script expression in field:

"$D{db.productName}"+" "+"some string"+"$P{parametername}"

Using script expression in printWhen property

$D{price}<1500

Quotation mark in expressions is required only if a string data are applied. Otherwise (i.e for

146

number) the quotation mark is not necessary.

27.9. Report items

27.9.1. Text label

The Label represents simple text or label items. Label items are used to display descriptive
information on a report definition, such as titles, headings, etc. Labels are static item, it’s values
don’t change when rendering the report.

XML syntax

<label>Text label...</label>

Tag properties

id

Identification number for internal purposes (temporarily not used)

posX

Item’s X coordinate in millimeter within the current section.

posY

Item’s Y coordinate in millimeter within the current section.

width

Label’s width in millimeter.

height

Label’s height in millimeter.

resource

Resource of the label. Not used for labels since they are always static.

fontName

Font style/face name

fontSize

Font size in points.

fontWeight

Font weight. Possible values are: bold,demibold

alignmentH

Label’s horizontal alignment. Possible values: left,right,center

147

alignmentV

Label’s vertical alignment. Possible values: top,center,bottom

forecolor

The foreground color of the label in #RRGGBB format

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.10. Fields
Field is the matter of report items. It represents the data Field objects. By data type Fields may be
text, numeric and date. Field items are used for pulling dynamically generated data into a report
from the specified data source such as database the report generator uses. For example, a Field
item may be used to present SQL data, variables and parameters. NCReport handles data formatting
for the different type of fields like numbers or texts.

27.10.1. XML syntax

<field>[data sourcename.]column</field>
<field>[expression]</field>
<field>[parametername]</field>
<field>[variablename]</field>
<field>[system variablename]</field>

27.10.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

type

The field’s base data type. The following data types are handled:

txt

Text data* num Numeric data. All numeric formatting options are valid only when this option is
set* date Date data. The date formatting options are valid for date type data only* bool Boolean
data. It’s value might be Yes/True or Not/False

ftype

This property represents what kind of field source expression is used by the field. Field’s value

148

are pulled from the specified source is set by this property. The possible sources are:

ds/SQL

The field gets data from the default or the specified data source* par The field gets data from the
specified parameter* var The field gets data from the specified variable* sys The field gets data
from the specified system variable* exp The field evaluates the script expression and it’s result
will be rendered

posX

Item’s X coordinate in millimeter within the current section.

posY

Item’s Y coordinate in millimeter within the current section.

width

Field’s width in millimeter.

height

Field’s height in millimeter.

resource

Not used for fields since they are always dynamic.

fontName

Font style/face name

fontSize

Font size in points.

fontWeight

Font weight. Possible values are: bold, demibold

alignmentH

Field’s horizontal alignment. Possible values: left, right, center

alignmentV

Field’s vertical alignment. Possible values: top, center, bottom

forecolor

The foreground color of the field in #RRGGBB format

formatting

If the field’s data type is numeric, this option tells the report engine if number formatting is
turned on or off. The possible values are: true,false

numwidth

Width of number in digits. The fieldWidth value specifies the minimum amount of space that a
is padded to and filled with the character fillChar. A positive value will produce right-aligned

149

text, whereas a negative value will produce left-aligned text. Works only when the number
formatting is turned on

format

This one digit option specifies the format code for numbers. Possibly values are: e,E,f. With e,E
and f, precision is the number of digits after the decimal point. With 'g' and 'G', precision is the
maximum number of significant digits. Used by <function>QString::arg(double a, int fieldWidth
= 0, char format = 'g', int precision = -1, const QChar & fillChar)</function> function.

precision

The number of digits after the decimal point for numeric data.

fillchar

The numwidth value specifies the minimum amount of space that a is padded to and filled with
the character fillchar. A positive value will produce right-aligned text, whereas a negative value
will produce left-aligned text.

callFunction

Specifies the Field level custom function is called when the field is evaluated. Not used currently.

lookupClass

Similar to callFunction. Temporarily is not used.

dateFormat

Date formatting expression. This expression uses the same format QDate::fromString() uses.
Works only when the field’s type is date

localized

Specifies if localization is turned on or off. Works for numeric data only. The possible values are:
true, false

blankifzero

If true, If the field’s value equals zero, the field will not be displayed.

arg

This expression specifies the QString::arg(…) string of field’s value to be replaced or formatted.
The field gets a copy of this string where a replaces the first occurrence of %1. The '%' can be
followed by an 'L', in which case the sequence is replaced with a localized representation of a.
The conversion uses the default locale, set by QLocale::setDefault(). If no default locale was
specified, the "C" locale is used.

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or

150

1) the item is shown, otherwise the item is hidden.

27.11. HTML Text
HTML Text represents the rich texts in Html format.

27.11.1. XML syntax

<text>Static (encoded) Html text</text>
<text>[data source].column</text>
<text>[filename]</text>

27.11.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

posX

Item’s X coordinate in millimeter within the current section.

posY

Item’s Y coordinate in millimeter within the current section.

width

width in millimeter.

height

height in millimeter.

resource

Resource of the text. Not used for labels since they are always static.

fontName

Font style/face name. Effects only if system settings is enabled.

fontSize

Font size in points. Effects only if system settings is enabled.

fontWeight

Font weight. Possible values are: bold,demibold Effects only if system settings is enabled.

forecolor

The foreground color of the label in #RRGGBB format. Effects only if system settings is enabled.

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

151

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.12. Line
The Line option enables you to create Line items. In general, Line items are used for drawing
vertical, horizontal lines for headings, underlining titles or so on. Lines are defined by it’s start and
the end point coordinates

27.12.1. XML syntax

<line></line>

27.12.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

lineStyle

Specifies the line drawing style of the item. Possible values are: solid Solid line, dash Dashed
line, dot Dotted line, dashdot Dash+dotted line, dashdotdot Dash+dot+dot line, nopen No line
painted. Unavailable for lines

fromX

X coordinate of the start point of line in millimeters within the current section.

fromY

Y coordinate of the start point of line in millimeters within the current section.

toX

X coordinate of the end point of line in millimeters within the current section.

toY

Y coordinate of the end point of line in millimeters within the current section.

resource

Not used for lines since they are always static.

lineWidth

The width of the line in millimeters

lineColor

The color of the line in #RRGGBB format

152

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.13. Rectangle
The Rectangle enables you to create Rectangle items. Rectangles are usually used for drawing boxes
or borders around a specified area. Rectangle makes easier the box drawings instead of drawing
four lines.

27.13.1. XML syntax

<rectangle></rectangle>

27.13.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

lineStyle

Specifies the line drawing style of the rectangle. Possible values are:

solid

Solid line* dash Dashed line* dot Dotted line* dashdot Dash+dotted line* dashdotdot
Dash+dot+dot line* nopen No line painted. The rectange is rendered without outline

fillStyle

Specifies the fill style or painting brush of the rectangle. Possible values are:

no

Rectangle is not filled.* solid Solid fill* dense1 Extremely dense brush pattern fill* dense2 Very
dense brush pattern fill dense3* Somewhat dense brush pattern fill* dense4 Half dense brush
pattern fill* dense5 Half dense brush pattern fill* dense6 Somewhat sparse brush pattern fill*
dense7 Very sparse brush pattern fill* hor Horizontal lines pattern fill* ver Vertical lines
pattern fill* cross Cross lines pattern fill* bdiag Backward diagonal lines pattern fill* fdiag
Foreword diagonal lines pattern fill* diagcross Crossing diagonal lines pattern fill

posX

Rectangle’s X coordinate in millimeters within the current section.

153

posY

Rectangle’s Y coordinate in millimeters within the current section.

width

Rectangle’s width in millimeters.

height

Rectangle’s height in millimeters.

resource

Not used for rectangles since they are always static.

lineWidth

The width of the outline in millimeters

lineColor

The color of the rectangle’s outline in #RRGGBB format

fillColor

The fill color of the rectangle in #RRGGBB format

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.14. Image
The Image option enables you to create Image items. Image items are used to insert either static or
dynamic into a report definition. Static images such as a company logo often displayed in the
Report Header can be loaded from a static file or from report definition. Dynamic images can be
loaded from the specified SQL data source.

27.14.1. XML syntax





27.14.2. Tag properties

154

id

Identification number for internal purposes (temporarily not used)

resource

Specifies the resource of the image item. Possible values are:

static

Image is loaded from report definition. The image must be saved into XML definition in Base64
encoded format* data source Image is loaded from data source (SQL database)* *file*Image is
loaded from the specified file. File might be with full path or relative to the program’s directory

posX

Image’s X coordinate in millimeters within the current section.

posY

Image’s Y coordinate in millimeters within the current section.

width

Image’s width in millimeters.

height

Image’s height in millimeters.

scaling

Logical option that specifies the image if is scaled or not. Possible values: true,false

aspectRatio

If scaling option is switched on, this property specifies the scaling method. Possible values:

ignore

The size of image is scaled freely. The aspect ratio is not preserved.* keep The size is scaled to a
rectangle as large as possible inside a given rectangle, preserving the aspect ratio.* expand The
size is scaled to a rectangle as small as possible outside a given rectangle, preserving the aspect
ratio.

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.15. Barcode
The Barcode option enables you to create barcodes. Currently the EAN13 code format is supported.
Barcodes might be either static or dynamic items similar to images. Static barcodes read it’s value

155

from the report definition, dynamic barcodes are loaded from the specified data source.

27.15.1. XML syntax

<barcode>[code]</barcode>
<barcode>[data source.]column</barcode>

27.15.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

resource

Specifies the resource of the barcode item. Possible values are:

static

Barcode is loaded from report definition. The barcode’s code must be specified in XML
definition* data source Barcode is loaded from data source

posX

Barcode’s X coordinate in millimeters within the current section.

posY

Barcode’s Y coordinate in millimeters within the current section.

width

Barcode’s width in millimeters.

height

Barcode’s height in millimeters.

barcodeType

The type name of the barcode. Possible values: EAN13

showCode

The logical property specifies if the code is shown under the barcode or not. Possible values:
true, false

sizeFactor

This integer property specifies the zooming factor of the barcode when it is rendering. This
property is very useful when we print barcodes to a high resolution device such as printer.
(Suggested value=10)

fontSize

The font size of the barcode’s text in points.

156

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

27.16. Graph or custom item
Graph/Custom item is a special member of NCReport items. This option enables you to render
special, custom defined contents in reports. The typical field of application is using this feature for
rendering graphs or such contents. For using this feature you need to do the followings:

• Add a Graph (Custom) item into your report in the designer and specify the size and the location
of this object.

• Set the class ID of the specified item

• If need, add a static item definition for the object. If you set it’s resource to data source and fill
out the data source column, this information will come from the specified data source column.*
Derive the <classname>NCReportAbstractItemRendering</classname> class implementing it’s
paintItem method. You may 'stick' this class to your graph or any kind of rendering class by
multiple inheritance. The paintItem method gets the following parameters:

QPainter* painter

this is the painter pointer.

NCReportOutput* output

the output object pointer.

const QRectF& rect

the rectangle of the object in the specified output. The geometry of the rectangle is depending
on the output’s resolution.

const QString& itemdata

item definition information comes from data source or report definition for custom
purposes.

• Set the string ID of your class for identification by setID(…) method.

• Create your custom rendering object (it must to be derived from
<classname>NCReportAbstractItemRendering</classname> class) and add it to NCReport object
by using addItemRenderingClass(…) method.

27.16.1. XML syntax

157

<graph></graph>

27.16.2. Tag properties

id

Identification number for internal purposes (temporarily not used)

classID

Class ID text for custom item class identification

resourceSpecifies

the resource of the graph item. Possible values are:

static

Graph definition is loaded from report definition. The definition text must be existed in XML
definition* data source Graph definition text is loaded from data source

posX

Graph’s X coordinate in millimeters within the current section.

posY

Graph’s Y coordinate in millimeters within the current section.

width

Graph’s width in millimeters.

height

Graph’s height in millimeters.

zValue

This integer number specifies Z-order value of the item. This value decides the stacking order of
sibling (neighboring) items.

printWhen

This logical script expression specifies the item’s visibility. If this expression is not empty, the
report engine evaluates it each time before rendering. If the logical expression returns true (or
1) the item is shown, otherwise the item is hidden.

158

	NCReport Definitive Guide (Beta)
	Table of Contents
	Basics
	Chapter 1. About NCReport in general
	1.1. A short history
	1.2. What is NCReport?
	1.3. Features
	1.4. Why NCReport?
	1.5. How NCReport does work
	1.6. Working schema
	1.7. Report template file

	Chapter 2. Installing NCReport
	2.1. Requirements
	2.2. NCReport has been tested with:
	2.3. Install Binary package on Linux
	2.4. Install (commercial) source package under Linux
	2.5. Install binary package on Windows
	2.6. Install (commercial) source package under Windows
	2.7. Contents of the installation directory
	2.8. Acknowledgements

	Chapter 3. Getting started
	3.1. Creating a basic report
	3.2. Beginning with a new report
	3.3. Testing report in Designer
	3.4. Variables and Groups
	3.5. Integrating NCReport into a Qt application

	Chapter 4. Report Items
	4.1. Static Text Item
	4.2. HTML (Rich) Text
	4.3. Data Field
	4.4. Line
	4.5. Rectangle
	4.6. Ellipse
	4.7. Image
	4.8. Barcode
	4.9. Table View / Model
	4.10. Cross Table
	4.11. Custom Graphics Content

	Chapter 5. Parameters
	5.1. Parameter Syntax
	5.2. Testing Parameters
	5.3. API code: Passing parameters to the report

	Designer
	Chapter 6. Getting Started with NCReport Designer
	6.1. Launching Designer
	6.2. The User Interface
	6.3. NCReport Designer Main Window
	6.4. Geometry editor
	6.5. Data Source Tree
	6.6. Field Expression Builder
	6.7. Designing a report
	6.8. Connecting to database from Designer
	6.9. Beginning a new report
	6.10. Report sections
	6.11. Setting up page and report options
	6.12. Adding data sources
	6.13. Assigning data source to the Detail
	6.14. Adding report items
	6.15. Adding total variable field
	6.16. Other items
	6.17. Adjustment and formatting
	6.18. Report is ready
	6.19. Adding Variables for Totals
	6.20. Running the report

	Advanced Features
	Chapter 7. Data/Script Expressions
	7.1. Using references in expressions
	7.2. References in templates
	7.3. Reference examples
	7.4. Testing Field Expression
	7.5. Field expression
	7.6. Result of field expression
	7.7. Print When Expressions
	7.8. Testing Print when expression
	7.9. Print only when expression is true condition
	7.10. Templates in Fields and Texts
	7.11. Script expressions in special locations
	7.12. Data Source Functions
	7.13. Data Source related (meta) functions
	7.14. Data Source Column related (Value) functions

	Chapter 8. Script Editor
	8.1. Script ID
	8.2. Script Definition
	8.3. Available Buttons

	Chapter 9. Data Formatting
	9.1. Text formats
	9.2. Numeric formats
	9.3. Date Formats

	Chapter 10. Zones
	10.1. Zone ID in property dialog
	10.2. Zones in Design mode

	Chapter 11. Dynamic data driven size and position
	11.1. Dynamic position and size settings

	Chapter 12. Dynamic data driven shape style
	12.1. Dynamic style settings

	Chapter 13. Page Breaks
	13.1. Detail page break condition
	13.2. Group page break condition
	13.3. Report item page break
	13.4. Report header page break

	Chapter 14. Text Document printout mode
	14.1. Steps of usage
	14.2. Text Document printout report example

	Chapter 15. Data Relation system
	15.1. Defining a parent data source
	15.2. Defining child data sources
	15.3. Setting up the detail section
	15.4. Designing the report
	15.5. Sub-query report example in Designer
	15.6. Result of a sub-query report example
	15.7. Changes in 2.13 version

	Chapter 16. Double pass mode
	16.1. Setting double pass mode
	16.2. Example using of pagecount variable

	Chapter 17. Internationalization
	17.1. Adding languages
	17.2. Adding translations of Fields or Labels
	17.3. Setting up the current language
	17.4. Setting up the language
	17.5. Setting up the current language from command line

	Chapter 18. Sub-Report iteration
	18.1. Sub-Report data source
	18.2. Reference to master data source

	Chapter 19. Table View Rendering
	19.1. Adding TableView item
	19.2. Table View Dialog
	19.3. Setting the object references
	19.4. Example
	19.5. QTableView widget
	19.6. QTableView table in print preview
	19.7. Printing Item Model Based Table without QTableView
	19.8. Custom Cell Content
	19.9. Handle progress signal of table rendering

	Chapter 20. Cross-Tab Tables
	20.1. Table Structure
	20.2. Using Cross-Table in Designer

	Chapter 21. Conditional Formatting
	21.1. Dynamic Style Tag Symbols
	21.2. Editing Style Code in Designer
	21.3. Default Style

	Chapter 22. General TEXT output
	22.1. Text template manager tags
	22.2. Text template tags
	22.3. Examples

	Chapter 23. Batch Report Mode
	Chapter 24. Special Detail Sections
	24.1. Sub (Detail) Sections
	24.2. Adding a Sub-Section
	24.3. Example Sub-Sections
	24.4. Odd / Even Pages
	24.5. Repeated detail by constant or dynamic value

	Command Line Tool
	Chapter 25. Command line client
	25.1. To run command line executable
	25.2. Command line options

	Using NCReport API
	Chapter 26. Using NCReport API
	26.1. Project file settings
	26.2. Initialize NCReport class
	26.3. Include directives
	26.4. Creating NCReport class
	26.5. Connecting to SQL database
	26.6. Setting the Report’s source
	26.7. Adding parameters
	26.8. Running the Report
	26.9. Running the Report by One Step
	26.10. Running the Report in customized mode
	26.11. Initializing Report’s Output
	26.12. Running the Report
	26.13. Previewing Report
	26.14. Deleting Report object
	26.15. Using other data sources
	26.16. Custom data sources
	26.17. Custom items in NCReport
	26.18. Batch report mode

	Specification
	Chapter 27. Specification
	27.1. Data sources
	27.2. Report sections
	27.3. Report Parameters
	27.4. Variables
	27.5. System Variables
	27.6. Expressions
	27.7. References in expressions
	27.8. Using script expression in field:
	27.9. Report items
	27.10. Fields
	27.11. HTML Text
	27.12. Line
	27.13. Rectangle
	27.14. Image
	27.15. Barcode
	27.16. Graph or custom item

